The objectives of this problem set is to orient you to a number of
activities in R and to conduct a thoughtful exercise in
appreciating the importance of data visualization. For each question
enter your code or text response in the code chunk that
completes/answers the activity or question requested. To submit this
homework you will create the document in Rstudio, using the knitr
package (button included in Rstudio) and then submit the document to
your Rpubs account. Once uploaded you
will submit the link to that document on Canvas. Please make sure that
this link is hyper linked and that I can see the visualization and the
code required to create it. Each question is worth 5 points.
anscombe data that is part of the
library(datasets) in R. And assign that data
to a new object called data.## Loading the anscombe data from the library(datasets):
anscombe
## x1 x2 x3 x4 y1 y2 y3 y4
## 1 10 10 10 8 8.04 9.14 7.46 6.58
## 2 8 8 8 8 6.95 8.14 6.77 5.76
## 3 13 13 13 8 7.58 8.74 12.74 7.71
## 4 9 9 9 8 8.81 8.77 7.11 8.84
## 5 11 11 11 8 8.33 9.26 7.81 8.47
## 6 14 14 14 8 9.96 8.10 8.84 7.04
## 7 6 6 6 8 7.24 6.13 6.08 5.25
## 8 4 4 4 19 4.26 3.10 5.39 12.50
## 9 12 12 12 8 10.84 9.13 8.15 5.56
## 10 7 7 7 8 4.82 7.26 6.42 7.91
## 11 5 5 5 8 5.68 4.74 5.73 6.89
str(anscombe)
## 'data.frame': 11 obs. of 8 variables:
## $ x1: num 10 8 13 9 11 14 6 4 12 7 ...
## $ x2: num 10 8 13 9 11 14 6 4 12 7 ...
## $ x3: num 10 8 13 9 11 14 6 4 12 7 ...
## $ x4: num 8 8 8 8 8 8 8 19 8 8 ...
## $ y1: num 8.04 6.95 7.58 8.81 8.33 ...
## $ y2: num 9.14 8.14 8.74 8.77 9.26 8.1 6.13 3.1 9.13 7.26 ...
## $ y3: num 7.46 6.77 12.74 7.11 7.81 ...
## $ y4: num 6.58 5.76 7.71 8.84 8.47 7.04 5.25 12.5 5.56 7.91 ...
## Assigning "anscombe" data to a new object 'data':
data <- anscombe
str(data)
## 'data.frame': 11 obs. of 8 variables:
## $ x1: num 10 8 13 9 11 14 6 4 12 7 ...
## $ x2: num 10 8 13 9 11 14 6 4 12 7 ...
## $ x3: num 10 8 13 9 11 14 6 4 12 7 ...
## $ x4: num 8 8 8 8 8 8 8 19 8 8 ...
## $ y1: num 8.04 6.95 7.58 8.81 8.33 ...
## $ y2: num 9.14 8.14 8.74 8.77 9.26 8.1 6.13 3.1 9.13 7.26 ...
## $ y3: num 7.46 6.77 12.74 7.11 7.81 ...
## $ y4: num 6.58 5.76 7.71 8.84 8.47 7.04 5.25 12.5 5.56 7.91 ...
summary(data)
## x1 x2 x3 x4 y1
## Min. : 4.0 Min. : 4.0 Min. : 4.0 Min. : 8 Min. : 4.260
## 1st Qu.: 6.5 1st Qu.: 6.5 1st Qu.: 6.5 1st Qu.: 8 1st Qu.: 6.315
## Median : 9.0 Median : 9.0 Median : 9.0 Median : 8 Median : 7.580
## Mean : 9.0 Mean : 9.0 Mean : 9.0 Mean : 9 Mean : 7.501
## 3rd Qu.:11.5 3rd Qu.:11.5 3rd Qu.:11.5 3rd Qu.: 8 3rd Qu.: 8.570
## Max. :14.0 Max. :14.0 Max. :14.0 Max. :19 Max. :10.840
## y2 y3 y4
## Min. :3.100 Min. : 5.39 Min. : 5.250
## 1st Qu.:6.695 1st Qu.: 6.25 1st Qu.: 6.170
## Median :8.140 Median : 7.11 Median : 7.040
## Mean :7.501 Mean : 7.50 Mean : 7.501
## 3rd Qu.:8.950 3rd Qu.: 7.98 3rd Qu.: 8.190
## Max. :9.260 Max. :12.74 Max. :12.500
dplyr package!)## Central tendencies calculation for each of the column and correlation between each data set pairs:
## Variable 1: 'X1' calculations:
# Mean:
Mean_x1<- mean(data$x1)
Mean_x1
## [1] 9
# Variance:
Var_x1<- var(data$x1)
Var_x1
## [1] 11
## Variable 2: 'X2' calculations:
# Mean:
Mean_x2<- mean(data$x2)
Mean_x2
## [1] 9
# Variance:
Var_x2<- var(data$x2)
Var_x2
## [1] 11
## Variable 3: 'X3' calculations:
# Mean:
Mean_x3<- mean(data$x3)
Mean_x3
## [1] 9
# Variance:
Var_x3<- var(data$x3)
Var_x3
## [1] 11
## Variable 3: 'X4' calculations:
# Mean:
Mean_x4<- mean(data$x4)
Mean_x4
## [1] 9
# Variance:
Var_x4<- var(data$x4)
Var_x4
## [1] 11
## Variable 5: 'Y1' calculations:
# Mean:
Mean_y1<- mean(data$y1)
Mean_y1
## [1] 7.500909
# Variance:
Var_y1<- var(data$y1)
Var_y1
## [1] 4.127269
## Variable 6: 'Y2' calculations:
# Mean:
Mean_y2<- mean(data$y2)
Mean_y2
## [1] 7.500909
# Variance:
Var_y2<- var(data$y2)
Var_y2
## [1] 4.127629
## Variable 7: 'Y3' calculations:
# Mean:
Mean_y3<- mean(data$y3)
Mean_y3
## [1] 7.5
# Variance:
Var_y3<- var(data$y3)
Var_y3
## [1] 4.12262
## Variable 8: 'Y4' calculations:
# Mean:
Mean_y4<- mean(data$y4)
Mean_y4
## [1] 7.500909
# Determination of Correlation between "X" and "Y" pairs:
library(dplyr)
set.seed(5)
## Correlation between "X1", and "Y1" pair:
cor(data$x1, data$y1)
## [1] 0.8164205
## Correlation between "X2", and "Y2" pair:
cor(data$x2, data$y2)
## [1] 0.8162365
## Correlation between "X3", and "Y3" pair:
cor(data$x3, data$y3)
## [1] 0.8162867
## Correlation between "X4", and "Y4" pair:
cor(data$x4, data$y4)
## [1] 0.8165214
## Extracting the dataset:
data <- anscombe
## Plot a: Scatter Plot for X1 and Y1 data pair:
# Ggplot Object layer:
X1_Y1_Scatter_Plot_a<-ggplot(data,
aes(data$x1, data$y1))
# Addition of subsequent layers to the grouped scatter object layer
X1_Y1_Plot <- X1_Y1_Scatter_Plot_a + geom_point() +
labs(title = "Scatter Plot for X1 and Y1 Dataset Pair ", x = "X1 Value Scale ", y = "Y1 Value Scale") + coord_cartesian(ylim = c(0, 12), xlim = c(2 , 15)) + cleanup
## Plot b: Scatter Plot for X2 and Y2 data pair:
# Ggplot Object layer:
X2_Y2_Scatter_Plot_b<-ggplot(data,
aes(data$x2, data$y2))
# Addition of subsequent layers to the grouped scatter object layer
X2_Y2_Plot <- X2_Y2_Scatter_Plot_b + geom_point() +
labs(title = "Scatter Plot for X2 and Y2 Dataset Pair ", x = "X2 Value Scale ", y = "Y2 Value Scale") + coord_cartesian(ylim = c(0, 12), xlim = c(2 , 15)) + cleanup
## Plot c: Scatter Plot for X3 and Y3 data pair:
# Ggplot Object layer:
X3_Y3_Scatter_Plot_c<-ggplot(data,
aes(data$x3, data$y3))
# Addition of subsequent layers to the grouped scatter object layer
X3_Y3_Plot <- X3_Y3_Scatter_Plot_c + geom_point() +
labs(title = "Scatter Plot for X3 and Y3 Dataset Pair ", x = "X3 Value Scale ", y = "Y3 Value Scale") + coord_cartesian(ylim = c(0, 15), xlim = c(2 , 15)) + cleanup
## Plot d: Scatter Plot for X4 and Y4 data pair:
# Ggplot Object layer:
X4_Y4_Scatter_Plot_d<-ggplot(data,
aes(data$x4, data$y4))
# Addition of subsequent layers to the grouped scatter object layer
X4_Y4_Plot <- X4_Y4_Scatter_Plot_d + geom_point() +
labs(title = "Scatter Plot for X4 and Y4 Dataset Pair ", x = "X4 Value Scale ", y = "Y4 Value Scale") + coord_cartesian(ylim = c(0, 12), xlim = c(2 , 15)) + cleanup
## GGplot determination of all the Data set "X" and "Y" pairs:
plot_grid(X1_Y1_Plot, X2_Y2_Plot, X3_Y3_Plot, X4_Y4_Plot)
# Plot-1:
X1_Y1_Scatter_Plot_a<-ggplot(data,
aes(data$x1, data$y1, colour = "blue"))
# Addition of subsequent layers to the grouped scatter object layer
X1_Y1_Plot <- X1_Y1_Scatter_Plot_a + geom_point() + scale_colour_manual(values = "Blue") +
labs(title = "Scatter Plot for X1 and Y1 Dataset Pair ", x = "X1 Value Scale ", y = "Y1 Value Scale") + coord_cartesian(ylim = c(0, 12), xlim = c(2 , 15)) + cleanup
## Plot-2
X2_Y2_Scatter_Plot_b<-ggplot(data,
aes(data$x2, data$y2, colour = "blue"))
# Addition of subsequent layers to the grouped scatter object layer
X2_Y2_Plot <- X2_Y2_Scatter_Plot_b + geom_point() + scale_colour_manual(values = "Blue") +
labs(title = "Scatter Plot for X2 and Y2 Dataset Pair ", x = "X2 Value Scale ", y = "Y2 Value Scale") + coord_cartesian(ylim = c(0, 12), xlim = c(2 , 15)) + cleanup
# Plot-3:
X3_Y3_Scatter_Plot_c<-ggplot(data,
aes(data$x3, data$y3, colour = "blue"))
# Addition of subsequent layers to the grouped scatter object layer
X3_Y3_Plot <- X3_Y3_Scatter_Plot_c + geom_point() + scale_colour_manual(values = "Blue") +
labs(title = "Scatter Plot for X3 and Y3 Dataset Pair ", x = "X3 Value Scale ", y = "Y3 Value Scale") + coord_cartesian(ylim = c(0, 15), xlim = c(2 , 15)) + cleanup
# Plot-4:
X4_Y4_Scatter_Plot_d<-ggplot(data,
aes(data$x4, data$y4, colour = "blue"))
# Addition of subsequent layers to the grouped scatter object layer
X4_Y4_Plot <- X4_Y4_Scatter_Plot_d + geom_point() + scale_colour_manual(values = "Blue") +
labs(title = "Scatter Plot for X4 and Y4 Dataset Pair ", x = "X4 Value Scale ", y = "Y4 Value Scale") + coord_cartesian(ylim = c(0, 12), xlim = c(2 , 15)) + cleanup
## GGplot determination of all the Data set "X" and "Y" pairs:
Plot_b <- plot_grid(X1_Y1_Plot, X2_Y2_Plot, X3_Y3_Plot, X4_Y4_Plot)
Plot_b
lm()
function.## Determination for Linear Model Fit to each data set leveraging 'lm()' function:
# Model -1:
Linear_Model_1<- lm(data$y1 ~ data$x1, data = data)
summary(Linear_Model_1)
##
## Call:
## lm(formula = data$y1 ~ data$x1, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.92127 -0.45577 -0.04136 0.70941 1.83882
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.0001 1.1247 2.667 0.02573 *
## data$x1 0.5001 0.1179 4.241 0.00217 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.237 on 9 degrees of freedom
## Multiple R-squared: 0.6665, Adjusted R-squared: 0.6295
## F-statistic: 17.99 on 1 and 9 DF, p-value: 0.00217
# Model -2:
Linear_Model_2<- lm(data$y2 ~ data$x2, data = data)
summary(Linear_Model_2)
##
## Call:
## lm(formula = data$y2 ~ data$x2, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.9009 -0.7609 0.1291 0.9491 1.2691
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.001 1.125 2.667 0.02576 *
## data$x2 0.500 0.118 4.239 0.00218 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.237 on 9 degrees of freedom
## Multiple R-squared: 0.6662, Adjusted R-squared: 0.6292
## F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002179
# Model -3:
Linear_Model_3<- lm(data$y3 ~ data$x3, data = data)
summary(Linear_Model_3)
##
## Call:
## lm(formula = data$y3 ~ data$x3, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.1586 -0.6146 -0.2303 0.1540 3.2411
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.0025 1.1245 2.670 0.02562 *
## data$x3 0.4997 0.1179 4.239 0.00218 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.236 on 9 degrees of freedom
## Multiple R-squared: 0.6663, Adjusted R-squared: 0.6292
## F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002176
# Model -4:
Linear_Model_4<- lm(data$y4 ~ data$x4, data = data)
summary(Linear_Model_4)
##
## Call:
## lm(formula = data$y4 ~ data$x4, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.751 -0.831 0.000 0.809 1.839
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.0017 1.1239 2.671 0.02559 *
## data$x4 0.4999 0.1178 4.243 0.00216 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.236 on 9 degrees of freedom
## Multiple R-squared: 0.6667, Adjusted R-squared: 0.6297
## F-statistic: 18 on 1 and 9 DF, p-value: 0.002165
## Creation of a four panel scatter plot comprising of data points and regression lines via ggplot function:
# Plot-1:
X1_Y1_Scatter_Plot_a<-ggplot(data,
aes(data$x1, data$y1, colour = "blue"))
# Addition of subsequent layers to the grouped scatter object layer
X1_Y1_Plot <- X1_Y1_Scatter_Plot_a + geom_point() + scale_colour_manual(values = "Blue") +
labs(title = "Scatter Plot for X1 and Y1 Dataset Pair ", x = "X1 Value Scale ", y = "Y1 Value Scale") + coord_cartesian(ylim = c(0, 12), xlim = c(2 , 15)) + geom_smooth(method = "lm", se = FALSE, colour ='darkgrey') + cleanup
## Plot-2
X2_Y2_Scatter_Plot_b<-ggplot(data,
aes(data$x2, data$y2, colour = "blue"))
# Addition of subsequent layers to the grouped scatter object layer
X2_Y2_Plot <- X2_Y2_Scatter_Plot_b + geom_point() + scale_colour_manual(values = "Blue") +
labs(title = "Scatter Plot for X2 and Y2 Dataset Pair ", x = "X2 Value Scale ", y = "Y2 Value Scale") + coord_cartesian(ylim = c(0, 12), xlim = c(2 , 15)) + geom_smooth(method = "lm", se = FALSE, colour ='darkgrey') + cleanup
# Plot-3:
X3_Y3_Scatter_Plot_c<-ggplot(data,
aes(data$x3, data$y3, colour = "blue"))
# Addition of subsequent layers to the grouped scatter object layer
X3_Y3_Plot <- X3_Y3_Scatter_Plot_c + geom_point() + scale_colour_manual(values = "Blue") +
labs(title = "Scatter Plot for X3 and Y3 Dataset Pair ", x = "X3 Value Scale ", y = "Y3 Value Scale") + coord_cartesian(ylim = c(0, 15), xlim = c(2 , 15)) + geom_smooth(method = "lm", se = FALSE, colour ='darkgrey') + cleanup
# Plot-4:
X4_Y4_Scatter_Plot_d<-ggplot(data,
aes(data$x4, data$y4, colour = "blue"))
# Addition of subsequent layers to the grouped scatter object layer
X4_Y4_Plot <- X4_Y4_Scatter_Plot_d + geom_point() + scale_colour_manual(values = "Blue") +
labs(title = "Scatter Plot for X4 and Y4 Dataset Pair ", x = "X4 Value Scale ", y = "Y4 Value Scale") + coord_cartesian(ylim = c(0, 12), xlim = c(2 , 15)) + geom_smooth(method = "lm", se = FALSE, colour ='darkgrey') + cleanup
## GGplot determination of all the Data set "X" and "Y" pairs:
Plot_c <- plot_grid(X1_Y1_Plot, X2_Y2_Plot, X3_Y3_Plot, X4_Y4_Plot)
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
Plot_c
## Creation of a four panel scatter plot comprising of data points and regression lines via "R" function:
## Linear Model-1 Plot_1:
par(mfrow = c(2,2))
plot(Linear_Model_1)
## Linear Model-2 Plot_2:
par(mfrow = c(2,2))
plot(Linear_Model_2)
## Linear Model-3 Plot_3:
par(mfrow = c(2,2))
plot(Linear_Model_3)
## Linear Model-4 Plot_4:
par(mfrow = c(2,2))
plot(Linear_Model_4)
## Determination of Model Fit for different derived Linear Models:
# Model-1 Fit:
Linear_Model_1<- lm(data$y1 ~ data$x1, data = data)
anova(Linear_Model_1)
Analysis of Variance Table
Response: data\(y1 Df Sum Sq Mean Sq F
value Pr(>F) data\)x1 1 27.510 27.5100 17.99 0.00217 **
Residuals 9 13.763 1.5292
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05
‘.’ 0.1 ’ ’ 1
# Model-2 Fit:
Linear_Model_2<- lm(data$y2 ~ data$x2, data = data)
anova(Linear_Model_2)
Analysis of Variance Table
Response: data\(y2 Df Sum Sq Mean Sq F
value Pr(>F) data\)x2 1 27.500 27.5000 17.966 0.002179 **
Residuals 9 13.776 1.5307
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05
‘.’ 0.1 ’ ’ 1
# Model-3 Fit:
Linear_Model_3<- lm(data$y3 ~ data$x3, data = data)
anova(Linear_Model_3)
Analysis of Variance Table
Response: data\(y3 Df Sum Sq Mean Sq F
value Pr(>F) data\)x3 1 27.470 27.4700 17.972 0.002176 **
Residuals 9 13.756 1.5285
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05
‘.’ 0.1 ’ ’ 1
# Model-4 Fit:
Linear_Model_4<- lm(data$y4 ~ data$x4, data = data)
anova(Linear_Model_4)
Analysis of Variance Table
Response: data\(y4 Df Sum Sq Mean Sq F
value Pr(>F) data\)x4 1 27.490 27.4900 18.003 0.002165 **
Residuals 9 13.742 1.5269
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05
‘.’ 0.1 ’ ’ 1
## Ancombe's Quartet speaks a lot about the huge variations that might exist in the trend analysis between the various dataset pairs, and which before the implementation or application of the data visualization techniques, or before generating data visuals would hardly be even visible or noticeable in the statistical data variable format. Also, it is further clearly evident from the multiple data visualization scatter plot outputs derived for all the four different "x", and "y" pairs of the Ancombe's Quartet dataset, that how unique the trend and correlation between the various "X", and "Y" variables data pairs might represent, and with an aid of the data visualization technique's driven outputs, we can further determine if the relationship trend between the various response or explanatory variables is either positive or negative and in addition to have an idea about the strength of the linear or non-linear relationship that might exist between the dataset variables.