setwd("D:/stat")getwd()## [1] "D:/stat"
load(“brfss2013.Rdata”) ### Load packages
library(ggplot2)
library(dplyr)load("brfss2013.Rdata")##1. Using the variable “sleptim1” and “marital”, determine the following:
#1.1 number of observations that are “NA” in the variable “sleptim1”;
brfss2013%>%
group_by(sleptim1)%>%
filter(is.na(sleptim1))%>%
summarize(count=n())## # A tibble: 1 × 2
## sleptim1 count
## <int> <int>
## 1 NA 7387
#1.2 number of observations having at most 5 hours of sleep;
brfss2013%>%
filter(sleptim1<=c(5))%>%
group_by(sleptim1)%>%
summarise(n=n())## # A tibble: 6 × 2
## sleptim1 n
## <int> <int>
## 1 0 1
## 2 1 228
## 3 2 1076
## 4 3 3496
## 5 4 14261
## 6 5 33436
SLEEP<-brfss2013%>%
filter(sleptim1<=c(5))%>%
group_by(sleptim1)%>%
summarise(n=n())sum(SLEEP$n)## [1] 52498
#1.3 number of observations having more than 5 hours of sleep but less than 11 hours of sleep;
brfss2013%>%
filter(sleptim1>c(5), sleptim1<c(11))%>%
group_by(sleptim1)%>%
summarise(n=n())## # A tibble: 5 × 2
## sleptim1 n
## <int> <int>
## 1 6 106197
## 2 7 142469
## 3 8 141102
## 4 9 23800
## 5 10 12102
SLEEP1<-brfss2013%>%
filter(sleptim1>c(5), sleptim1<c(11))%>%
group_by(sleptim1)%>%
summarise(n=n())sum(SLEEP1$n)## [1] 425670
#at 1.4 number of observations having at least 11 hours of sleep and
brfss2013%>%
filter(sleptim1>=c(11))%>%
group_by(sleptim1)%>%
summarise(n=n())## # A tibble: 16 × 2
## sleptim1 n
## <int> <int>
## 1 11 833
## 2 12 3675
## 3 13 199
## 4 14 447
## 5 15 367
## 6 16 369
## 7 17 35
## 8 18 164
## 9 19 13
## 10 20 64
## 11 21 3
## 12 22 10
## 13 23 4
## 14 24 35
## 15 103 1
## 16 450 1
SLEEP2<-brfss2013%>%
filter(sleptim1>=c(11))%>%
group_by(sleptim1)%>%
summarise(n=n())sum(SLEEP2$n)## [1] 6220
#1.5 number of observations having at most 5 hours of sleep that are married.
brfss2013%>%
filter(sleptim1<=c(5), marital=="Married")%>%
group_by(sleptim1,marital)%>%
summarise(n=n())## `summarise()` has grouped output by 'sleptim1'. You can override using the
## `.groups` argument.
## # A tibble: 5 × 3
## # Groups: sleptim1 [5]
## sleptim1 marital n
## <int> <fct> <int>
## 1 1 Married 61
## 2 2 Married 302
## 3 3 Married 1120
## 4 4 Married 5452
## 5 5 Married 14482
SLEEP3<-brfss2013%>%
filter(sleptim1<=c(5), marital=="Married")%>%
group_by(sleptim1)%>%
summarise(n=n())sum(SLEEP3$n)## [1] 21417