Cuadros en base al informe de RESULTADO ENCUESTA SOCIOECONÓMICA Isla Rojas

Aca cargos las 8 tablas de datos de spss a R Como no todas estan etiquetadas importo los spss sin las etiquetas

Hago una tabla maestra llamada Comunidades con 901 hogares A cada tabal le pego un vector que tiene el codigo de localidad, que para las 8 loclaidades estan en orden alfabetico

Lectura de datos y Verificacion

dir(pattern = "*.sav")
## [1] "Caracarai_senasa.sav"    "Melgarejo_senasa.sav"   
## [3] "Nupyahu_senasa.sav"      "PasoYobai_senasa.sav"   
## [5] "sanignacio_senansa.sav"  "Sansalvador_senasa.sav" 
## [7] "Signaciocaaz_senasa.sav" "Vizcaino_senasa.sav"
library(foreign)
Caracarai <- as.data.frame(read.spss("Caracarai_senasa.sav", use.value.labels = FALSE))
## Warning: Caracarai_senasa.sav: Unrecognized record type 7, subtype 18
## encountered in system file
## re-encoding from CP1252
Melgarejo <- as.data.frame(read.spss("Melgarejo_senasa.sav", use.value.labels = FALSE))
## Warning: Melgarejo_senasa.sav: Unrecognized record type 7, subtype 18
## encountered in system file
## re-encoding from CP1252
Nupyahu <- as.data.frame(read.spss("Nupyahu_senasa.sav", use.value.labels = FALSE))
## Warning: Nupyahu_senasa.sav: Unrecognized record type 7, subtype 18
## encountered in system file
## re-encoding from CP1252
PasoYobai <- as.data.frame(read.spss("PasoYobai_senasa.sav", use.value.labels = FALSE))
## Warning: PasoYobai_senasa.sav: Unrecognized record type 7, subtype 18
## encountered in system file
## re-encoding from CP1252
Sanignacio <- as.data.frame(read.spss("sanignacio_senansa.sav", use.value.labels = FALSE))
## Warning: sanignacio_senansa.sav: Unrecognized record type 7, subtype 18
## encountered in system file
## re-encoding from CP1252
Sansalvador <- as.data.frame(read.spss("Sansalvador_senasa.sav", use.value.labels = FALSE))
## Warning: Sansalvador_senasa.sav: Unrecognized record type 7, subtype 18
## encountered in system file
## re-encoding from CP1252
Signaciocaaz <- as.data.frame(read.spss("Signaciocaaz_senasa.sav", use.value.labels = FALSE))
## Warning: Signaciocaaz_senasa.sav: Unrecognized record type 7, subtype 18
## encountered in system file
## re-encoding from CP1252
Vizcaino <- as.data.frame(read.spss("Vizcaino_senasa.sav", use.value.labels = FALSE))
## Warning: Vizcaino_senasa.sav: Unrecognized record type 7, subtype 18
## encountered in system file
## re-encoding from CP1252

save.image("Comunidades.RData")

Caracarai$comunidad <- 1
Melgarejo$comunidad <- 2
Nupyahu$comunidad <- 3
PasoYobai$comunidad <- 4
Sanignacio$comunidad <- 5
Sansalvador$comunidad <- 6
Signaciocaaz$comunidad <- 7
Vizcaino$comunidad <- 8

Crea archivo maestro

Comunidades <- rbind(Caracarai, Melgarejo, Nupyahu, PasoYobai, Sanignacio, Sansalvador, 
    Signaciocaaz, Vizcaino)

dim(Comunidades)
## [1] 901 244
names(Comunidades)
##   [1] "CODIGO"    "FECHA"     "DEPTO"     "ENCUEST1"  "DISTRITO" 
##   [6] "ENCUESTA"  "COMPANIA"  "HORA"      "LOCALIDA"  "DISTANCI" 
##  [11] "DISTANC1"  "NOMBRE"    "ENTREVIS"  "B1"        "B2"       
##  [16] "MESES"     "B3"        "PARED"     "TECHO"     "PISO"     
##  [21] "ELECTRIC"  "RED"       "LETRINA"   "TELEFONO"  "C9"       
##  [26] "C10"       "C11"       "JEFE"      "EDADJ"     "SEXOJ"    
##  [31] "INSTJ"     "LEEJ"      "TRABAJAJ"  "OCUPACIO"  "PERS1"    
##  [36] "EDAD1"     "SEXO1"     "INST1"     "LEE1"      "TRABAJA1" 
##  [41] "OCUPACI1"  "PERS2"     "EDAD2"     "SEXO2"     "INST2"    
##  [46] "LEE2"      "TRABAJA2"  "OCUPACI2"  "PERS3"     "EDAD3"    
##  [51] "SEXO3"     "INST3"     "LEE3"      "TRABAJA3"  "OCUPACI3" 
##  [56] "PERS4"     "EDAD4"     "SEXO4"     "INST4"     "LEE4"     
##  [61] "TRABAJA4"  "OCUPACI4"  "PERS5"     "EDAD5"     "SEXO5"    
##  [66] "INST5"     "LEE5"      "TRABAJA5"  "OCUPACI5"  "C12"      
##  [71] "ABUESALA"  "CUANTOME"  "PADRESAL"  "CUANTOM1"  "MADRESAL" 
##  [76] "CUANTOM2"  "HIJO1SAL"  "CUANTOM3"  "HIJO2SAL"  "CUANTOM4" 
##  [81] "HIJO3SAL"  "CUANTOM5"  "OTROSALA"  "CUANTOM6"  "TOTALGUA" 
##  [86] "C14A1"     "C14A2"     "C14A3"     "C14B1"     "C14B2"    
##  [91] "C14B3"     "C14C1"     "C14C2"     "C14C3"     "C14D1"    
##  [96] "C14D2"     "C14D3"     "C14E1"     "C14E2"     "C14E3"    
## [101] "C14F1"     "C14F2"     "C14F3"     "C14G1"     "C14G2"    
## [106] "C14G3"     "C14H1"     "C14H2"     "C14H3"     "C14I1"    
## [111] "C14I2"     "C14I3"     "C14J1"     "C14J2"     "C14J3"    
## [116] "TOTALMES"  "TOTALANU"  "D15"       "E16"       "E17"      
## [121] "E18"       "E19"       "E20"       "E21RECI1"  "CAPARECI" 
## [126] "FRERECI1"  "CANTRECI"  "PAGORECI"  "E21RECI2"  "CAPAREC1" 
## [131] "FRERECI2"  "CANTREC1"  "PAGOREC1"  "E21RECI3"  "CAPAREC2" 
## [136] "FRERECI3"  "CANTREC2"  "PAGOREC2"  "CAPATOTA"  "FRETOTAL" 
## [141] "CANTTOTA"  "PAGOTOTA"  "E21B"      "E22"       "E23"      
## [146] "E24"       "E25"       "E261"      "E262"      "E263"     
## [151] "E264"      "E265"      "E266"      "E267"      "E268"     
## [156] "E269"      "E2610"     "E26B"      "E27"       "E27B"     
## [161] "E28"       "F28B"      "F29"       "F30"       "F31"      
## [166] "F32"       "F33"       "F341"      "F342"      "F34B"     
## [171] "F35"       "G36"       "G36B"      "G37"       "G37B"     
## [176] "G38A"      "G38B"      "G38C"      "G38D"      "G39NIN"   
## [181] "G39DIA"    "G39DIAT"   "G39EST"    "G39ESTT"   "G39INF"   
## [186] "G39INFT"   "G39TUB"    "G39TUBT"   "G39PAR"    "G39PART"  
## [191] "G39PIE"    "G39PIET"   "G39OJO"    "G39OJOT"   "G39OTR"   
## [196] "G39OTRT"   "G40"       "G40A1"     "G40A2"     "G40B"     
## [201] "G41"       "G42"       "G43RAD1"   "G43RAD1H"  "G43DIA1"  
## [206] "G43DIA1F"  "G43CAN1"   "G43CAN1H"  "G43RAD2"   "G43RAD2H" 
## [211] "G43DIA2"   "G43DIA2F"  "G43CAN2"   "G43CAN2H"  "G43RAD3"  
## [216] "G43RAD3H"  "G43DIA3"   "G43DIA3F"  "G43CAN3"   "G43CAN3H" 
## [221] "H44"       "H45"       "H46ORG1"   "H46OR1AC"  "LIDERORG" 
## [226] "H46ORG2"   "H46OR2AC"  "LIDEROR1"  "H46ORG3"   "H46OR3AC" 
## [231] "LIDEROR2"  "H47ORG1"   "H47OR1AC"  "H47ORG2"   "H47OR2AC" 
## [236] "H47ORG3"   "H47OR3AC"  "H48"       "I49"       "I50"      
## [241] "I51"       "P52"       "P53"       "comunidad"

Crea identificador unico y selecciona variable de personas para acumular en los hogares

library(car)
## Loading required package: MASS Loading required package: nnet
ficha <- seq(1:901)
unique(ficha)
##   [1]   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17
##  [18]  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34
##  [35]  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51
##  [52]  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68
##  [69]  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85
##  [86]  86  87  88  89  90  91  92  93  94  95  96  97  98  99 100 101 102
## [103] 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
## [120] 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
## [137] 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
## [154] 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
## [171] 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
## [188] 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
## [205] 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
## [222] 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
## [239] 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
## [256] 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
## [273] 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
## [290] 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
## [307] 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
## [324] 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
## [341] 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
## [358] 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
## [375] 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
## [392] 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
## [409] 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
## [426] 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
## [443] 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
## [460] 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
## [477] 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
## [494] 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
## [511] 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
## [528] 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
## [545] 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
## [562] 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
## [579] 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
## [596] 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
## [613] 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
## [630] 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
## [647] 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
## [664] 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
## [681] 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
## [698] 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
## [715] 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
## [732] 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
## [749] 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
## [766] 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
## [783] 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
## [800] 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
## [817] 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
## [834] 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
## [851] 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
## [868] 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
## [885] 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
ficha <- Comunidades$comunidad * 10000 + ficha

Comunidades <- cbind(ficha, Comunidades)
Comunidades1 <- Comunidades[, c(1, 29:70, 245)]
names(Comunidades1)
##  [1] "ficha"     "JEFE"      "EDADJ"     "SEXOJ"     "INSTJ"    
##  [6] "LEEJ"      "TRABAJAJ"  "OCUPACIO"  "PERS1"     "EDAD1"    
## [11] "SEXO1"     "INST1"     "LEE1"      "TRABAJA1"  "OCUPACI1" 
## [16] "PERS2"     "EDAD2"     "SEXO2"     "INST2"     "LEE2"     
## [21] "TRABAJA2"  "OCUPACI2"  "PERS3"     "EDAD3"     "SEXO3"    
## [26] "INST3"     "LEE3"      "TRABAJA3"  "OCUPACI3"  "PERS4"    
## [31] "EDAD4"     "SEXO4"     "INST4"     "LEE4"      "TRABAJA4" 
## [36] "OCUPACI4"  "PERS5"     "EDAD5"     "SEXO5"     "INST5"    
## [41] "LEE5"      "TRABAJA5"  "OCUPACI5"  "comunidad"

personas <- reshape(Comunidades1, idvar = "ficha", varying = list(c(2, 9, 16, 
    23, 30, 37), c(3, 10, 17, 24, 31, 38), c(4, 11, 18, 25, 32, 39), c(5, 12, 
    19, 26, 33, 40), c(6, 13, 20, 27, 34, 41), c(7, 14, 21, 28, 35, 42), c(8, 
    15, 22, 29, 36, 43)), v.names = c("PERS", "EDAD", "SEXO", "INST", "LEE", 
    "TRABAJA", "OCUPA"), direction = "long")
head(personas)
##         ficha comunidad time PERS EDAD SEXO INST LEE TRABAJA OCUPA
## 10001.1 10001         1    1    0   31    2    5   1       2    NA
## 10002.1 10002         1    1    0   45    1    8   1       1     2
## 10003.1 10003         1    1    0   38    1   12   1       1     1
## 10004.1 10004         1    1    0   58    1   12   1       1     1
## 10005.1 10005         1    1    0   60    1    2   1       1     2
## 10006.1 10006         1    1    0   40    2    4   1       2    NA
names(personas)
##  [1] "ficha"     "comunidad" "time"      "PERS"      "EDAD"     
##  [6] "SEXO"      "INST"      "LEE"       "TRABAJA"   "OCUPA"

Tablas de control en los 7 atributos evaluados en los 6 integrantes por hogar

addmargins(table(personas$PERS, personas$comunidad, useNA = "always"))
##       
##           1    2    3    4    5    6    7    8 <NA>  Sum
##   0     120  249   26  210   26  174   36   60    0  901
##   1      90  169   20  128   20   97   26   40    0  590
##   2       9   15    0   20    0   19    7    5    0   75
##   3      82  148   30  120   14   95   23   28    0  540
##   4     104  213   23  181   26  119   28   60    0  754
##   5       2    5    0   10    1    8    0    4    0   30
##   6       0    1    0    0    0    3    0    0    0    4
##   7      13   38    5   13    1   36    8   12    0  126
##   8       4    5    0    3    0    4    0    1    0   17
##   9       3    1    2    5    0    3    1    5    0   20
##   <NA>  293  650   50  570   68  486   87  145    0 2349
##   Sum   720 1494  156 1260  156 1044  216  360    0 5406
addmargins(table(personas$EDAD, personas$comunidad, useNA = "always"))
##       
##           1    2    3    4    5    6    7    8 <NA>  Sum
##   0       0    8    0   11    0    0    0    0    0   19
##   1       1    9    3   10    3    4    3    4    0   37
##   2       2   17    1    6    0    7    3    3    0   39
##   3       4   20    2   12    1    4    2    5    0   50
##   4       7   13    1   10    6    6    3    2    0   48
##   5       7   12    1    7    0    3    2    3    0   35
##   6       2   10    1   14    0    8    2    2    0   39
##   7       8    5    5   18    1   10    1    4    0   52
##   8      10   14    3   13    1    4    0    6    0   51
##   9       7   14    4   19    1    4    2    4    0   55
##   10      6   11    6   15    4    8    3    3    0   56
##   11      8   13    0   15    1    5    2    5    0   49
##   12      2   11    1   14    0    8    1    4    0   41
##   13     14   13    1   11    1   13    2    5    0   60
##   14      6    8    1    8    0    8    4    5    0   40
##   15     11   12    2   18    2   10    2    5    0   62
##   16     15   23    2    9    2   17    3    5    0   76
##   17     12   20    0   19    5   11    1    3    0   71
##   18      8   19    3   19    4   11    5   11    0   80
##   19     13   17    2   13    3   12    3    9    0   72
##   20      9   13    4    8    3   15    4    3    0   59
##   21      5   11    1    5    2    6    1    2    0   33
##   22     10   20    2   11    2    8    4    3    0   60
##   23      7   12    2    8    1    7    1    4    0   42
##   24      7   10    1   10    1    7    1    2    0   39
##   25      4   21    6   12    3   10    1    4    0   61
##   26      3   12    4   10    1    5    3    3    0   41
##   27      3   18    1   19    1    9    0    5    0   56
##   28      3   14    1   12    2    5    1    5    0   43
##   29     11   10    2   12    0    2    2    1    0   40
##   30     12   28    1   25    2    8    2    4    0   82
##   31      7    8    0    4    1    3    2    1    0   26
##   32      7   19    1   12    1    7    2    1    0   50
##   33      1   10    5   15    3    9    1    2    0   46
##   34      3    9    1   10    0    7    1    2    0   33
##   35      8   31    3   25    0    8    1    6    0   82
##   36      4   16    0    7    0    4    2    3    0   36
##   37      5    6    1    6    3    4    0    1    0   26
##   38      9   12    3   19    1    6    2    2    0   54
##   39      6    7    1   10    1    3    1    4    0   33
##   40     12   21    1   14    1   16    2    4    0   71
##   41      1    2    0    7    0    4    0    2    0   16
##   42      3   17    1   14    0    4    2    2    0   43
##   43      8    5    2   11    2    5    4    2    0   39
##   44      4    9    1    5    0    5    2    2    0   28
##   45     12   16    0   20    2   10    2    1    0   63
##   46      3    6    1    4    0    3    1    2    0   20
##   47      6    9    1    3    0   11    2    2    0   34
##   48      7   12    0    6    2   10    3    4    0   44
##   49      7    9    0    3    1    4    0    2    0   26
##   50     10   18    0   16    1   17    3    3    0   68
##   51      0    5    1    5    2    4    0    3    0   20
##   52      2    7    1   10    1   16    0    1    0   38
##   53      6    5    1    5    1    4    1    3    0   26
##   54      4    5    2    3    0    6    4    0    0   24
##   55      8   11    1    4    1    4    4    2    0   35
##   56      6    5    0    5    3    4    1    0    0   24
##   57      4    7    1    3    1    6    3    2    0   27
##   58      4   17    0    1    0    9    1    1    0   33
##   59      4    3    0    4    0    3    1    1    0   16
##   60      6    9    2    5    1   11    0    2    0   36
##   61      2    8    0    3    0    4    0    1    0   18
##   62      2    8    1    4    0   10    2    1    0   28
##   63      3   11    2    1    0    9    3    0    0   29
##   64      1    6    0    2    0    7    0    0    0   16
##   65      4    9    1    5    0    6    1    6    0   32
##   66      1    3    0    3    0    5    1    0    0   13
##   67      0    2    3    1    0    6    1    1    0   14
##   68      3    7    0    3    1    6    0    2    0   22
##   69      1    5    0    1    0    6    0    0    0   13
##   70      4   10    2    4    0    4    2    1    0   27
##   71      0    1    0    0    0    2    0    0    0    3
##   72      1    4    0    2    0    5    1    1    0   14
##   73      4    0    0    6    0    5    2    2    0   19
##   74      1    2    1    2    2    5    0    1    0   14
##   75      1    3    0    2    0    2    0    2    0   10
##   76      4    1    0    3    1    2    0    1    0   12
##   77      1    1    0    0    1    3    1    2    0    9
##   78      1    0    0    1    0    4    0    1    0    7
##   79      1    2    0    2    0    2    0    1    0    8
##   80      2    4    0    3    0    3    0    0    0   12
##   81      0    0    1    0    0    2    1    0    0    4
##   82      0    0    0    0    0    3    1    1    0    5
##   83      0    1    0    0    1    0    0    1    0    3
##   84      3    1    0    0    0    1    0    0    0    5
##   85      0    1    0    1    0    2    0    2    0    6
##   86      1    0    0    0    0    1    0    0    0    2
##   87      1    1    0    0    0    3    0    0    0    5
##   88      0    1    0    0    0    1    0    0    0    2
##   89      0    2    0    0    0    1    0    1    0    4
##   90      0    1    0    0    0    0    0    0    0    1
##   91      0    0    0    0    0    0    1    0    0    1
##   92      0    1    0    0    0    1    0    0    0    2
##   94      0    0    0    0    0    1    0    0    0    1
##   96      0    0    0    0    0    1    0    0    0    1
##   99      0    0    0    0    0    2    0    0    0    2
##   <NA>  294  644   50  562   68  487   87  145    0 2337
##   Sum   720 1494  156 1260  156 1044  216  360    0 5406
addmargins(table(personas$SEXO, personas$comunidad, useNA = "always"))
##       
##           1    2    3    4    5    6    7    8 <NA>  Sum
##   1     228  453   48  376   49  279   69  121    0 1623
##   2     198  396   58  327   39  278   59   94    0 1449
##   <NA>  294  645   50  557   68  487   88  145    0 2334
##   Sum   720 1494  156 1260  156 1044  216  360    0 5406
addmargins(table(personas$INST, personas$comunidad, useNA = "always"))
##       
##           1    2    3    4    5    6    7    8 <NA>  Sum
##   0      17   94    9   88    1   24    1   11    0  245
##   1      11   19    4   20    0   14    7    3    0   78
##   2      24   29   14   29    1   22    6   15    0  140
##   3      40   55   15   48    5   47   12   16    0  238
##   4      38   39   13   48    8   20   13   12    0  191
##   5      32   31    8   38   11   32   11   13    0  176
##   6     112  159   28  151   19  125   29   67    0  690
##   7      12   21    1   19    4   12    4    7    0   80
##   8      10   26    2   28    5   19    2    7    0   99
##   9      19   68    1   38    3   32    6    7    0  174
##   10     12   22    0   15    1   25    5    9    0   89
##   11     17   26    1   15    4   18    0    4    0   85
##   12     46  133    2  107    9   59   14   25    0  395
##   13     23  120    3   53    6   89    6    6    0  306
##   15      0    0    0    0    0    0    1    0    0    1
##   31      0    0    0    0    0    1    0    0    0    1
##   <NA>  307  652   55  563   79  505   99  158    0 2418
##   Sum   720 1494  156 1260  156 1044  216  360    0 5406
addmargins(table(personas$LEE, personas$comunidad, useNA = "always"))
##       
##           1    2    3    4    5    6    7    8 <NA>  Sum
##   1     381  735   85  604   75  504  111  187    0 2682
##   2      15  103    8   95    2   19    2    7    0  251
##   <NA>  324  656   63  561   79  521  103  166    0 2473
##   Sum   720 1494  156 1260  156 1044  216  360    0 5406
addmargins(table(personas$TRABAJA, personas$comunidad, useNA = "always"))
##       
##           1    2    3    4    5    6    7    8 <NA>  Sum
##   1     162  394   39  302   29  223   45   77    0 1271
##   2     232  441   49  392   46  286   68  117    0 1631
##   <NA>  326  659   68  566   81  535  103  166    0 2504
##   Sum   720 1494  156 1260  156 1044  216  360    0 5406
addmargins(table(personas$OCUPA, personas$comunidad, useNA = "always"))
##       
##           1    2    3    4    5    6    7    8 <NA>  Sum
##   1      13   53    2   27    1   26    5    5    0  132
##   2      80   46   36   42   18   36   18   45    0  321
##   3       0    4    0    2    0    0    0    0    0    6
##   4       1    1    1    1    0    5    0    0    0    9
##   6       0    0    0    0    0    1    0    0    0    1
##   7      18   13    0   21    2    9    5    7    0   75
##   8       0    1    0    1    0    5    0    0    0    7
##   9       2    4    0   10    0    3    1    0    0   20
##   10     15   50    0   56    3   27    4    2    0  157
##   11      0    2    0    0    0    0    0    0    0    2
##   12      2   42    0   15    0    8    1    1    0   69
##   14      2    0    0    1    3    0    1    0    0    7
##   15      4    5    0    5    0    2    1    3    0   20
##   16      0    0    0    0    1    3    0    0    0    4
##   17      4   21    0   16    0   12    0    3    0   56
##   19      0    1    0    0    0    1    0    0    0    2
##   21      0    1    0    1    0    2    0    1    0    5
##   22     12   33    0   31    1   24    7    6    0  114
##   23      0    1    0    0    0    0    0    0    0    1
##   24      0    1    0    0    0    0    0    0    0    1
##   25      3   65    0   41    0   19    2    2    0  132
##   26      0   14    0    7    0   12    0    0    0   33
##   27      3   22    0   10    0   34    0    0    0   69
##   28      0    0    0    0    0    4    1    0    0    5
##   29      0    9    0    8    0    0    0    0    0   17
##   30      0    0    0    0    0    1    0    0    0    1
##   31      0    0    0    3    0    0    0    0    0    3
##   32      0    0    0    0    0    1    0    0    0    1
##   33      2    0    0    0    0    0    0    0    0    2
##   35      0    3    0    3    0    0    0    0    0    6
##   <NA>  559 1102  117  959  127  809  170  285    0 4128
##   Sum   720 1494  156 1260  156 1044  216  360    0 5406

Crea variable de edad binaria

personas$EDAD.rec <- recode(personas$EDAD, "lo:17=0;18:hi=1")
personas$EDAD.rec <- as.factor(personas$EDAD.rec)
levels(personas$EDAD.rec) <- c("0-Menor a 18", "1- 18 años o mas")
addmargins(table(personas$EDAD, personas$EDAD.rec, useNA = "always"))
##       
##        0-Menor a 18 1- 18 años o mas <NA>  Sum
##   0              19                0    0   19
##   1              37                0    0   37
##   2              39                0    0   39
##   3              50                0    0   50
##   4              48                0    0   48
##   5              35                0    0   35
##   6              39                0    0   39
##   7              52                0    0   52
##   8              51                0    0   51
##   9              55                0    0   55
##   10             56                0    0   56
##   11             49                0    0   49
##   12             41                0    0   41
##   13             60                0    0   60
##   14             40                0    0   40
##   15             62                0    0   62
##   16             76                0    0   76
##   17             71                0    0   71
##   18              0               80    0   80
##   19              0               72    0   72
##   20              0               59    0   59
##   21              0               33    0   33
##   22              0               60    0   60
##   23              0               42    0   42
##   24              0               39    0   39
##   25              0               61    0   61
##   26              0               41    0   41
##   27              0               56    0   56
##   28              0               43    0   43
##   29              0               40    0   40
##   30              0               82    0   82
##   31              0               26    0   26
##   32              0               50    0   50
##   33              0               46    0   46
##   34              0               33    0   33
##   35              0               82    0   82
##   36              0               36    0   36
##   37              0               26    0   26
##   38              0               54    0   54
##   39              0               33    0   33
##   40              0               71    0   71
##   41              0               16    0   16
##   42              0               43    0   43
##   43              0               39    0   39
##   44              0               28    0   28
##   45              0               63    0   63
##   46              0               20    0   20
##   47              0               34    0   34
##   48              0               44    0   44
##   49              0               26    0   26
##   50              0               68    0   68
##   51              0               20    0   20
##   52              0               38    0   38
##   53              0               26    0   26
##   54              0               24    0   24
##   55              0               35    0   35
##   56              0               24    0   24
##   57              0               27    0   27
##   58              0               33    0   33
##   59              0               16    0   16
##   60              0               36    0   36
##   61              0               18    0   18
##   62              0               28    0   28
##   63              0               29    0   29
##   64              0               16    0   16
##   65              0               32    0   32
##   66              0               13    0   13
##   67              0               14    0   14
##   68              0               22    0   22
##   69              0               13    0   13
##   70              0               27    0   27
##   71              0                3    0    3
##   72              0               14    0   14
##   73              0               19    0   19
##   74              0               14    0   14
##   75              0               10    0   10
##   76              0               12    0   12
##   77              0                9    0    9
##   78              0                7    0    7
##   79              0                8    0    8
##   80              0               12    0   12
##   81              0                4    0    4
##   82              0                5    0    5
##   83              0                3    0    3
##   84              0                5    0    5
##   85              0                6    0    6
##   86              0                2    0    2
##   87              0                5    0    5
##   88              0                2    0    2
##   89              0                4    0    4
##   90              0                1    0    1
##   91              0                1    0    1
##   92              0                2    0    2
##   94              0                1    0    1
##   96              0                1    0    1
##   99              0                2    0    2
##   <NA>            0                0 2337 2337
##   Sum           880             2189 2337 5406

personas$comunidad.rec <- personas$comunidad
personas$comunidad.rec <- as.factor(personas$comunidad.rec)
levels(personas$comunidad.rec) <- c("1-Caracarai", "2-Melgarejo", "3-Nupyahu", 
    "4-PasoYobai", "5-Sanignacio", "6-Sansalvador$comunidad", "7-Signaciocaaz", 
    "8-Vizcaino")

Cuadros para el informe para las personas

tablaperson.1 <- table(personas$SEXO, personas$EDAD.rec, personas$comunidad.rec)
tablaperson.2 <- table(personas$INST, personas$comunidad, useNA = "always")
tablaperson.3 <- table(personas$LEE, personas$comunidad, useNA = "always")
tablaperson.4 <- table(personas$TRABAJA, personas$comunidad, useNA = "always")
tablaperson.5 <- table(personas$TRABAJA, personas$EDAD.rec, personas$comunidad, 
    useNA = "always")
tablaperson.6 <- table(personas$OCUPA, personas$TRABAJA, personas$comunidad, 
    useNA = "always")

addmargins(tablaperson.1)
## , ,  = 1-Caracarai
## 
##      
##       0-Menor a 18 1- 18 años o mas  Sum
##   1             58              169  227
##   2             63              135  198
##   Sum          121              304  425
## 
## , ,  = 2-Melgarejo
## 
##      
##       0-Menor a 18 1- 18 años o mas  Sum
##   1            131              322  453
##   2            101              295  396
##   Sum          232              617  849
## 
## , ,  = 3-Nupyahu
## 
##      
##       0-Menor a 18 1- 18 años o mas  Sum
##   1             12               36   48
##   2             22               36   58
##   Sum           34               72  106
## 
## , ,  = 4-PasoYobai
## 
##      
##       0-Menor a 18 1- 18 años o mas  Sum
##   1            129              245  374
##   2            100              224  324
##   Sum          229              469  698
## 
## , ,  = 5-Sanignacio
## 
##      
##       0-Menor a 18 1- 18 años o mas  Sum
##   1             17               32   49
##   2             11               28   39
##   Sum           28               60   88
## 
## , ,  = 6-Sansalvador$comunidad
## 
##      
##       0-Menor a 18 1- 18 años o mas  Sum
##   1             68              210  278
##   2             62              216  278
##   Sum          130              426  556
## 
## , ,  = 7-Signaciocaaz
## 
##      
##       0-Menor a 18 1- 18 años o mas  Sum
##   1             18               51   69
##   2             18               41   59
##   Sum           36               92  128
## 
## , ,  = 8-Vizcaino
## 
##      
##       0-Menor a 18 1- 18 años o mas  Sum
##   1             42               79  121
##   2             26               68   94
##   Sum           68              147  215
## 
## , ,  = Sum
## 
##      
##       0-Menor a 18 1- 18 años o mas  Sum
##   1            475             1144 1619
##   2            403             1043 1446
##   Sum          878             2187 3065
addmargins(tablaperson.2)
##       
##           1    2    3    4    5    6    7    8 <NA>  Sum
##   0      17   94    9   88    1   24    1   11    0  245
##   1      11   19    4   20    0   14    7    3    0   78
##   2      24   29   14   29    1   22    6   15    0  140
##   3      40   55   15   48    5   47   12   16    0  238
##   4      38   39   13   48    8   20   13   12    0  191
##   5      32   31    8   38   11   32   11   13    0  176
##   6     112  159   28  151   19  125   29   67    0  690
##   7      12   21    1   19    4   12    4    7    0   80
##   8      10   26    2   28    5   19    2    7    0   99
##   9      19   68    1   38    3   32    6    7    0  174
##   10     12   22    0   15    1   25    5    9    0   89
##   11     17   26    1   15    4   18    0    4    0   85
##   12     46  133    2  107    9   59   14   25    0  395
##   13     23  120    3   53    6   89    6    6    0  306
##   15      0    0    0    0    0    0    1    0    0    1
##   31      0    0    0    0    0    1    0    0    0    1
##   <NA>  307  652   55  563   79  505   99  158    0 2418
##   Sum   720 1494  156 1260  156 1044  216  360    0 5406
addmargins(tablaperson.3)
##       
##           1    2    3    4    5    6    7    8 <NA>  Sum
##   1     381  735   85  604   75  504  111  187    0 2682
##   2      15  103    8   95    2   19    2    7    0  251
##   <NA>  324  656   63  561   79  521  103  166    0 2473
##   Sum   720 1494  156 1260  156 1044  216  360    0 5406
addmargins(tablaperson.4)
##       
##           1    2    3    4    5    6    7    8 <NA>  Sum
##   1     162  394   39  302   29  223   45   77    0 1271
##   2     232  441   49  392   46  286   68  117    0 1631
##   <NA>  326  659   68  566   81  535  103  166    0 2504
##   Sum   720 1494  156 1260  156 1044  216  360    0 5406
addmargins(tablaperson.5)
## , ,  = 1
## 
##       
##        0-Menor a 18 1- 18 años o mas <NA>  Sum
##   1               0              162    0  162
##   2              93              139    0  232
##   <NA>           29                3  294  326
##   Sum           122              304  294  720
## 
## , ,  = 2
## 
##       
##        0-Menor a 18 1- 18 años o mas <NA>  Sum
##   1              10              384    0  394
##   2             208              233    0  441
##   <NA>           15                0  644  659
##   Sum           233              617  644 1494
## 
## , ,  = 3
## 
##       
##        0-Menor a 18 1- 18 años o mas <NA>  Sum
##   1               1               38    0   39
##   2              22               27    0   49
##   <NA>           11                7   50   68
##   Sum            34               72   50  156
## 
## , ,  = 4
## 
##       
##        0-Menor a 18 1- 18 años o mas <NA>  Sum
##   1               9              293    0  302
##   2             211              176    5  392
##   <NA>            9                0  557  566
##   Sum           229              469  562 1260
## 
## , ,  = 5
## 
##       
##        0-Menor a 18 1- 18 años o mas <NA>  Sum
##   1               1               28    0   29
##   2              14               32    0   46
##   <NA>           13                0   68   81
##   Sum            28               60   68  156
## 
## , ,  = 6
## 
##       
##        0-Menor a 18 1- 18 años o mas <NA>  Sum
##   1               2              221    0  223
##   2              94              192    0  286
##   <NA>           34               14  487  535
##   Sum           130              427  487 1044
## 
## , ,  = 7
## 
##       
##        0-Menor a 18 1- 18 años o mas <NA>  Sum
##   1               0               45    0   45
##   2              23               45    0   68
##   <NA>           13                3   87  103
##   Sum            36               93   87  216
## 
## , ,  = 8
## 
##       
##        0-Menor a 18 1- 18 años o mas <NA>  Sum
##   1               1               76    0   77
##   2              47               70    0  117
##   <NA>           20                1  145  166
##   Sum            68              147  145  360
## 
## , ,  = NA
## 
##       
##        0-Menor a 18 1- 18 años o mas <NA>  Sum
##   1               0                0    0    0
##   2               0                0    0    0
##   <NA>            0                0    0    0
##   Sum             0                0    0    0
## 
## , ,  = Sum
## 
##       
##        0-Menor a 18 1- 18 años o mas <NA>  Sum
##   1              24             1247    0 1271
##   2             712              914    5 1631
##   <NA>          144               28 2332 2504
##   Sum           880             2189 2337 5406
addmargins(tablaperson.6)
## , ,  = 1
## 
##       
##           1    2 <NA>  Sum
##   1      13    0    0   13
##   2      80    0    0   80
##   3       0    0    0    0
##   4       1    0    0    1
##   6       0    0    0    0
##   7      18    0    0   18
##   8       0    0    0    0
##   9       2    0    0    2
##   10     15    0    0   15
##   11      0    0    0    0
##   12      2    0    0    2
##   14      2    0    0    2
##   15      4    0    0    4
##   16      0    0    0    0
##   17      4    0    0    4
##   19      0    0    0    0
##   21      0    0    0    0
##   22     12    0    0   12
##   23      0    0    0    0
##   24      0    0    0    0
##   25      3    0    0    3
##   26      0    0    0    0
##   27      3    0    0    3
##   28      0    0    0    0
##   29      0    0    0    0
##   30      0    0    0    0
##   31      0    0    0    0
##   32      0    0    0    0
##   33      2    0    0    2
##   35      0    0    0    0
##   <NA>    1  232  326  559
##   Sum   162  232  326  720
## 
## , ,  = 2
## 
##       
##           1    2 <NA>  Sum
##   1      53    0    0   53
##   2      46    0    0   46
##   3       4    0    0    4
##   4       1    0    0    1
##   6       0    0    0    0
##   7      13    0    0   13
##   8       1    0    0    1
##   9       4    0    0    4
##   10     50    0    0   50
##   11      2    0    0    2
##   12     41    1    0   42
##   14      0    0    0    0
##   15      5    0    0    5
##   16      0    0    0    0
##   17     21    0    0   21
##   19      1    0    0    1
##   21      1    0    0    1
##   22     33    0    0   33
##   23      1    0    0    1
##   24      1    0    0    1
##   25     65    0    0   65
##   26     14    0    0   14
##   27     22    0    0   22
##   28      0    0    0    0
##   29      7    2    0    9
##   30      0    0    0    0
##   31      0    0    0    0
##   32      0    0    0    0
##   33      0    0    0    0
##   35      3    0    0    3
##   <NA>    5  438  659 1102
##   Sum   394  441  659 1494
## 
## , ,  = 3
## 
##       
##           1    2 <NA>  Sum
##   1       2    0    0    2
##   2      36    0    0   36
##   3       0    0    0    0
##   4       1    0    0    1
##   6       0    0    0    0
##   7       0    0    0    0
##   8       0    0    0    0
##   9       0    0    0    0
##   10      0    0    0    0
##   11      0    0    0    0
##   12      0    0    0    0
##   14      0    0    0    0
##   15      0    0    0    0
##   16      0    0    0    0
##   17      0    0    0    0
##   19      0    0    0    0
##   21      0    0    0    0
##   22      0    0    0    0
##   23      0    0    0    0
##   24      0    0    0    0
##   25      0    0    0    0
##   26      0    0    0    0
##   27      0    0    0    0
##   28      0    0    0    0
##   29      0    0    0    0
##   30      0    0    0    0
##   31      0    0    0    0
##   32      0    0    0    0
##   33      0    0    0    0
##   35      0    0    0    0
##   <NA>    0   49   68  117
##   Sum    39   49   68  156
## 
## , ,  = 4
## 
##       
##           1    2 <NA>  Sum
##   1      27    0    0   27
##   2      42    0    0   42
##   3       2    0    0    2
##   4       1    0    0    1
##   6       0    0    0    0
##   7      21    0    0   21
##   8       1    0    0    1
##   9      10    0    0   10
##   10     56    0    0   56
##   11      0    0    0    0
##   12     15    0    0   15
##   14      1    0    0    1
##   15      5    0    0    5
##   16      0    0    0    0
##   17     16    0    0   16
##   19      0    0    0    0
##   21      1    0    0    1
##   22     31    0    0   31
##   23      0    0    0    0
##   24      0    0    0    0
##   25     41    0    0   41
##   26      7    0    0    7
##   27     10    0    0   10
##   28      0    0    0    0
##   29      8    0    0    8
##   30      0    0    0    0
##   31      3    0    0    3
##   32      0    0    0    0
##   33      0    0    0    0
##   35      3    0    0    3
##   <NA>    1  392  566  959
##   Sum   302  392  566 1260
## 
## , ,  = 5
## 
##       
##           1    2 <NA>  Sum
##   1       1    0    0    1
##   2      18    0    0   18
##   3       0    0    0    0
##   4       0    0    0    0
##   6       0    0    0    0
##   7       2    0    0    2
##   8       0    0    0    0
##   9       0    0    0    0
##   10      3    0    0    3
##   11      0    0    0    0
##   12      0    0    0    0
##   14      3    0    0    3
##   15      0    0    0    0
##   16      1    0    0    1
##   17      0    0    0    0
##   19      0    0    0    0
##   21      0    0    0    0
##   22      1    0    0    1
##   23      0    0    0    0
##   24      0    0    0    0
##   25      0    0    0    0
##   26      0    0    0    0
##   27      0    0    0    0
##   28      0    0    0    0
##   29      0    0    0    0
##   30      0    0    0    0
##   31      0    0    0    0
##   32      0    0    0    0
##   33      0    0    0    0
##   35      0    0    0    0
##   <NA>    0   46   81  127
##   Sum    29   46   81  156
## 
## , ,  = 6
## 
##       
##           1    2 <NA>  Sum
##   1      25    1    0   26
##   2      36    0    0   36
##   3       0    0    0    0
##   4       5    0    0    5
##   6       1    0    0    1
##   7       9    0    0    9
##   8       5    0    0    5
##   9       3    0    0    3
##   10     27    0    0   27
##   11      0    0    0    0
##   12      8    0    0    8
##   14      0    0    0    0
##   15      2    0    0    2
##   16      3    0    0    3
##   17     11    1    0   12
##   19      1    0    0    1
##   21      2    0    0    2
##   22     24    0    0   24
##   23      0    0    0    0
##   24      0    0    0    0
##   25     19    0    0   19
##   26     12    0    0   12
##   27     20   14    0   34
##   28      4    0    0    4
##   29      0    0    0    0
##   30      1    0    0    1
##   31      0    0    0    0
##   32      1    0    0    1
##   33      0    0    0    0
##   35      0    0    0    0
##   <NA>    4  270  535  809
##   Sum   223  286  535 1044
## 
## , ,  = 7
## 
##       
##           1    2 <NA>  Sum
##   1       5    0    0    5
##   2      17    1    0   18
##   3       0    0    0    0
##   4       0    0    0    0
##   6       0    0    0    0
##   7       5    0    0    5
##   8       0    0    0    0
##   9       1    0    0    1
##   10      4    0    0    4
##   11      0    0    0    0
##   12      1    0    0    1
##   14      1    0    0    1
##   15      1    0    0    1
##   16      0    0    0    0
##   17      0    0    0    0
##   19      0    0    0    0
##   21      0    0    0    0
##   22      7    0    0    7
##   23      0    0    0    0
##   24      0    0    0    0
##   25      2    0    0    2
##   26      0    0    0    0
##   27      0    0    0    0
##   28      1    0    0    1
##   29      0    0    0    0
##   30      0    0    0    0
##   31      0    0    0    0
##   32      0    0    0    0
##   33      0    0    0    0
##   35      0    0    0    0
##   <NA>    0   67  103  170
##   Sum    45   68  103  216
## 
## , ,  = 8
## 
##       
##           1    2 <NA>  Sum
##   1       5    0    0    5
##   2      45    0    0   45
##   3       0    0    0    0
##   4       0    0    0    0
##   6       0    0    0    0
##   7       7    0    0    7
##   8       0    0    0    0
##   9       0    0    0    0
##   10      2    0    0    2
##   11      0    0    0    0
##   12      1    0    0    1
##   14      0    0    0    0
##   15      3    0    0    3
##   16      0    0    0    0
##   17      3    0    0    3
##   19      0    0    0    0
##   21      1    0    0    1
##   22      6    0    0    6
##   23      0    0    0    0
##   24      0    0    0    0
##   25      2    0    0    2
##   26      0    0    0    0
##   27      0    0    0    0
##   28      0    0    0    0
##   29      0    0    0    0
##   30      0    0    0    0
##   31      0    0    0    0
##   32      0    0    0    0
##   33      0    0    0    0
##   35      0    0    0    0
##   <NA>    2  117  166  285
##   Sum    77  117  166  360
## 
## , ,  = NA
## 
##       
##           1    2 <NA>  Sum
##   1       0    0    0    0
##   2       0    0    0    0
##   3       0    0    0    0
##   4       0    0    0    0
##   6       0    0    0    0
##   7       0    0    0    0
##   8       0    0    0    0
##   9       0    0    0    0
##   10      0    0    0    0
##   11      0    0    0    0
##   12      0    0    0    0
##   14      0    0    0    0
##   15      0    0    0    0
##   16      0    0    0    0
##   17      0    0    0    0
##   19      0    0    0    0
##   21      0    0    0    0
##   22      0    0    0    0
##   23      0    0    0    0
##   24      0    0    0    0
##   25      0    0    0    0
##   26      0    0    0    0
##   27      0    0    0    0
##   28      0    0    0    0
##   29      0    0    0    0
##   30      0    0    0    0
##   31      0    0    0    0
##   32      0    0    0    0
##   33      0    0    0    0
##   35      0    0    0    0
##   <NA>    0    0    0    0
##   Sum     0    0    0    0
## 
## , ,  = Sum
## 
##       
##           1    2 <NA>  Sum
##   1     131    1    0  132
##   2     320    1    0  321
##   3       6    0    0    6
##   4       9    0    0    9
##   6       1    0    0    1
##   7      75    0    0   75
##   8       7    0    0    7
##   9      20    0    0   20
##   10    157    0    0  157
##   11      2    0    0    2
##   12     68    1    0   69
##   14      7    0    0    7
##   15     20    0    0   20
##   16      4    0    0    4
##   17     55    1    0   56
##   19      2    0    0    2
##   21      5    0    0    5
##   22    114    0    0  114
##   23      1    0    0    1
##   24      1    0    0    1
##   25    132    0    0  132
##   26     33    0    0   33
##   27     55   14    0   69
##   28      5    0    0    5
##   29     15    2    0   17
##   30      1    0    0    1
##   31      3    0    0    3
##   32      1    0    0    1
##   33      2    0    0    2
##   35      6    0    0    6
##   <NA>   13 1611 2504 4128
##   Sum  1271 1631 2504 5406