BPI
# Looking at bivariate relationship
cor.test(RQ2_BPI$z_new_PRS, RQ2_BPI$BPI)
##
## Pearson's product-moment correlation
##
## data: RQ2_BPI$z_new_PRS and RQ2_BPI$BPI
## t = 2.6337, df = 538, p-value = 0.008689
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.02871752 0.19533975
## sample estimates:
## cor
## 0.1128217
# running the models
child_BPI <- lmer(BPI ~ z_new_PRS + MAge_RQ2_BPI + MAge_RQ2_BPI_sq + Sex2 + PC1 + PC2 + PC3 + PC4 + Which_BPI + (1|Fam_ID_14), data = RQ2_BPI)
parent_BPI <- lmer(BPI ~ bioparent_z_new_PRS + MAge_RQ2_BPI + MAge_RQ2_BPI_sq + Sex2 + PC1 + PC2 + PC3 + PC4 + Which_BPI + (1|Fam_ID_14), data = RQ2_BPI)
pair_BPI <- lmer(BPI ~ z_new_PRS + bioparent_z_new_PRS + MAge_RQ2_BPI + MAge_RQ2_BPI_sq + Sex2 + PC1 + PC2 + PC3 + PC4 + Which_BPI + (1|Fam_ID_14), data = RQ2_BPI)
# examining results
summ(child_BPI, digits=3) # child: p = .01
## MODEL INFO:
## Observations: 540
## Dependent Variable: BPI
## Type: Mixed effects linear regression
##
## MODEL FIT:
## AIC = 2762.327, BIC = 2813.826
## Pseudo-R² (fixed effects) = 0.037
## Pseudo-R² (total) = 0.406
##
## FIXED EFFECTS:
## -----------------------------------------------------------------
## Est. S.E. t val. d.f. p
## --------------------- -------- ------- -------- --------- -------
## (Intercept) 3.567 0.245 14.543 512.506 0.000
## z_new_PRS 0.369 0.145 2.546 521.646 0.011
## MAge_RQ2_BPI 0.049 0.039 1.266 529.793 0.206
## MAge_RQ2_BPI_sq -0.035 0.011 -3.232 494.432 0.001
## Sex2 -0.278 0.263 -1.058 487.944 0.291
## PC1 -6.058 5.522 -1.097 407.870 0.273
## PC2 0.304 3.959 0.077 366.457 0.939
## PC3 -3.516 4.277 -0.822 424.117 0.411
## PC4 3.963 4.356 0.910 421.553 0.363
## Which_BPI 1.769 1.963 0.901 513.555 0.368
## -----------------------------------------------------------------
##
## p values calculated using Satterthwaite d.f.
##
## RANDOM EFFECTS:
## -------------------------------------
## Group Parameter Std. Dev.
## ----------- ------------- -----------
## Fam_ID_14 (Intercept) 1.986
## Residual 2.518
## -------------------------------------
##
## Grouping variables:
## ------------------------------
## Group # groups ICC
## ----------- ---------- -------
## Fam_ID_14 341 0.384
## ------------------------------
summ(parent_BPI, digits=3) # parent: p = .003
## MODEL INFO:
## Observations: 540
## Dependent Variable: BPI
## Type: Mixed effects linear regression
##
## MODEL FIT:
## AIC = 2759.735, BIC = 2811.234
## Pseudo-R² (fixed effects) = 0.045
## Pseudo-R² (total) = 0.421
##
## FIXED EFFECTS:
## ---------------------------------------------------------------------
## Est. S.E. t val. d.f. p
## ------------------------- -------- ------- -------- --------- -------
## (Intercept) 3.613 0.245 14.746 514.469 0.000
## bioparent_z_new_PRS 0.461 0.154 2.989 342.581 0.003
## MAge_RQ2_BPI 0.051 0.039 1.323 529.707 0.186
## MAge_RQ2_BPI_sq -0.036 0.011 -3.313 493.814 0.001
## Sex2 -0.277 0.262 -1.056 486.688 0.291
## PC1 -5.777 5.517 -1.047 410.629 0.296
## PC2 0.174 3.966 0.044 374.051 0.965
## PC3 -3.057 4.280 -0.714 425.779 0.475
## PC4 4.043 4.358 0.928 423.733 0.354
## Which_BPI 1.190 1.970 0.604 518.682 0.546
## ---------------------------------------------------------------------
##
## p values calculated using Satterthwaite d.f.
##
## RANDOM EFFECTS:
## -------------------------------------
## Group Parameter Std. Dev.
## ----------- ------------- -----------
## Fam_ID_14 (Intercept) 2.013
## Residual 2.495
## -------------------------------------
##
## Grouping variables:
## ------------------------------
## Group # groups ICC
## ----------- ---------- -------
## Fam_ID_14 341 0.394
## ------------------------------
summ(pair_BPI, digits=3) # child: p = .19; parent: p = .04
## MODEL INFO:
## Observations: 540
## Dependent Variable: BPI
## Type: Mixed effects linear regression
##
## MODEL FIT:
## AIC = 2761.811, BIC = 2817.601
## Pseudo-R² (fixed effects) = 0.047
## Pseudo-R² (total) = 0.418
##
## FIXED EFFECTS:
## ---------------------------------------------------------------------
## Est. S.E. t val. d.f. p
## ------------------------- -------- ------- -------- --------- -------
## (Intercept) 3.596 0.245 14.676 512.572 0.000
## z_new_PRS 0.214 0.163 1.313 528.881 0.190
## bioparent_z_new_PRS 0.356 0.173 2.050 388.081 0.041
## MAge_RQ2_BPI 0.049 0.039 1.250 528.744 0.212
## MAge_RQ2_BPI_sq -0.036 0.011 -3.335 493.367 0.001
## Sex2 -0.272 0.262 -1.039 486.757 0.299
## PC1 -6.252 5.515 -1.134 409.114 0.258
## PC2 0.014 3.958 0.004 370.587 0.997
## PC3 -3.227 4.272 -0.755 423.906 0.450
## PC4 4.225 4.352 0.971 422.424 0.332
## Which_BPI 1.320 1.970 0.670 516.783 0.503
## ---------------------------------------------------------------------
##
## p values calculated using Satterthwaite d.f.
##
## RANDOM EFFECTS:
## -------------------------------------
## Group Parameter Std. Dev.
## ----------- ------------- -----------
## Fam_ID_14 (Intercept) 1.996
## Residual 2.502
## -------------------------------------
##
## Grouping variables:
## ------------------------------
## Group # groups ICC
## ----------- ---------- -------
## Fam_ID_14 341 0.389
## ------------------------------
#Find change between models that don't vs. do include PRS_parent
anova(child_BPI, pair_BPI) # p = .04
## refitting model(s) with ML (instead of REML)
## Data: RQ2_BPI
## Models:
## child_BPI: BPI ~ z_new_PRS + MAge_RQ2_BPI + MAge_RQ2_BPI_sq + Sex2 + PC1 + PC2 + PC3 + PC4 + Which_BPI + (1 | Fam_ID_14)
## pair_BPI: BPI ~ z_new_PRS + bioparent_z_new_PRS + MAge_RQ2_BPI + MAge_RQ2_BPI_sq + Sex2 + PC1 + PC2 + PC3 + PC4 + Which_BPI + (1 | Fam_ID_14)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## child_BPI 12 2768.1 2819.6 -1372.0 2744.1
## pair_BPI 13 2765.8 2821.6 -1369.9 2739.8 4.2494 1 0.03927 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(parent_BPI, pair_BPI) # p = .18
## refitting model(s) with ML (instead of REML)
## Data: RQ2_BPI
## Models:
## parent_BPI: BPI ~ bioparent_z_new_PRS + MAge_RQ2_BPI + MAge_RQ2_BPI_sq + Sex2 + PC1 + PC2 + PC3 + PC4 + Which_BPI + (1 | Fam_ID_14)
## pair_BPI: BPI ~ z_new_PRS + bioparent_z_new_PRS + MAge_RQ2_BPI + MAge_RQ2_BPI_sq + Sex2 + PC1 + PC2 + PC3 + PC4 + Which_BPI + (1 | Fam_ID_14)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## parent_BPI 12 2765.6 2817.1 -1370.8 2741.6
## pair_BPI 13 2765.8 2821.6 -1369.9 2739.8 1.7673 1 0.1837
# Scatter plot
effect_plot(child_BPI, pred = z_new_PRS, interval = FALSE, plot.points = TRUE, x.label = "Child PRS score", y.label = "BPI Internalizing Score", main.title = "Unadjusted Assocation Between Child PRS and Child BPI")

effect_plot(parent_BPI, pred = bioparent_z_new_PRS, interval = FALSE, plot.points = TRUE, x.label = "Parent PRS score", y.label = "BPI Internalizing Score", main.title = "Unadjusted Assocation Between Parent PRS and Child BPI")

effect_plot(pair_BPI, pred = z_new_PRS, interval = FALSE, plot.points = TRUE, x.label = "Child PRS score", y.label = "BPI Internalizing Score", main.title = "Adjusted Assocation Between Child PRS and Child BPI")

effect_plot(pair_BPI, pred = bioparent_z_new_PRS, interval = FALSE, plot.points = TRUE, x.label = "Parent PRS score", y.label = "BPI Internalizing Score", main.title = "Adjusted Assocation Between Parent PRS and Child BPI")

CDI
# Looking at bivariate relationship
cor.test(RQ2_CDI$z_new_PRS, RQ2_CDI$CDI)
##
## Pearson's product-moment correlation
##
## data: RQ2_CDI$z_new_PRS and RQ2_CDI$CDI
## t = 1.5876, df = 276, p-value = 0.1135
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.02276771 0.21041822
## sample estimates:
## cor
## 0.09513009
# running the models
child_CDI <- lmer(CDI ~ z_new_PRS + MAge_RQ2_CDI + MAge_RQ2_CDI_sq + Sex2 + PC1 + PC2 + PC3 + PC4 + Which_CDI + (1|Fam_ID_14), data = RQ2_CDI)
parent_CDI <- lmer(CDI ~ bioparent_z_new_PRS + MAge_RQ2_CDI + MAge_RQ2_CDI_sq + Sex2 + PC1 + PC2 + PC3 + PC4 + Which_CDI + (1|Fam_ID_14), data = RQ2_CDI)
## boundary (singular) fit: see help('isSingular')
pair_CDI <- lmer(CDI ~ z_new_PRS + bioparent_z_new_PRS + MAge_RQ2_CDI + MAge_RQ2_CDI_sq + Sex2 + PC1 + PC2 + PC3 + PC4 + Which_CDI + (1|Fam_ID_14), data = RQ2_CDI)
## boundary (singular) fit: see help('isSingular')
# examining results
summ(child_CDI, digits=3) # child: p = .10
## MODEL INFO:
## Observations: 278
## Dependent Variable: CDI
## Type: Mixed effects linear regression
##
## MODEL FIT:
## AIC = 1298.961, BIC = 1342.492
## Pseudo-R² (fixed effects) = 0.093
## Pseudo-R² (total) = 0.095
##
## FIXED EFFECTS:
## -----------------------------------------------------------------
## Est. S.E. t val. d.f. p
## --------------------- -------- ------- -------- --------- -------
## (Intercept) 3.463 0.301 11.500 263.402 0.000
## z_new_PRS 0.254 0.155 1.641 242.682 0.102
## MAge_RQ2_CDI 0.186 0.097 1.910 266.380 0.057
## MAge_RQ2_CDI_sq -0.040 0.065 -0.614 261.347 0.539
## Sex2 -1.145 0.312 -3.671 267.902 0.000
## PC1 3.797 5.248 0.724 224.131 0.470
## PC2 5.390 4.521 1.192 190.957 0.235
## PC3 -5.370 4.938 -1.087 216.411 0.278
## PC4 0.552 5.605 0.099 209.405 0.922
## Which_CDI 0.732 0.306 2.393 260.527 0.017
## -----------------------------------------------------------------
##
## p values calculated using Satterthwaite d.f.
##
## RANDOM EFFECTS:
## -------------------------------------
## Group Parameter Std. Dev.
## ----------- ------------- -----------
## Fam_ID_14 (Intercept) 0.104
## Residual 2.477
## -------------------------------------
##
## Grouping variables:
## ------------------------------
## Group # groups ICC
## ----------- ---------- -------
## Fam_ID_14 211 0.002
## ------------------------------
summ(parent_CDI, digits=3) # parent: p = .25
## MODEL INFO:
## Observations: 278
## Dependent Variable: CDI
## Type: Mixed effects linear regression
##
## MODEL FIT:
## AIC = 1300.396, BIC = 1343.928
## Pseudo-R² (fixed effects) = 0.089
## Pseudo-R² (total) = 0.089
##
## FIXED EFFECTS:
## ---------------------------------------------------------------------
## Est. S.E. t val. d.f. p
## ------------------------- -------- ------- -------- --------- -------
## (Intercept) 3.507 0.300 11.693 268.000 0.000
## bioparent_z_new_PRS 0.171 0.148 1.156 268.000 0.249
## MAge_RQ2_CDI 0.194 0.097 1.999 268.000 0.047
## MAge_RQ2_CDI_sq -0.039 0.065 -0.606 268.000 0.545
## Sex2 -1.141 0.313 -3.645 268.000 0.000
## PC1 4.109 5.253 0.782 268.000 0.435
## PC2 5.320 4.538 1.172 268.000 0.242
## PC3 -5.326 4.950 -1.076 268.000 0.283
## PC4 0.378 5.619 0.067 268.000 0.946
## Which_CDI 0.684 0.305 2.245 268.000 0.026
## ---------------------------------------------------------------------
##
## p values calculated using Satterthwaite d.f.
##
## RANDOM EFFECTS:
## -------------------------------------
## Group Parameter Std. Dev.
## ----------- ------------- -----------
## Fam_ID_14 (Intercept) 0.000
## Residual 2.485
## -------------------------------------
##
## Grouping variables:
## ------------------------------
## Group # groups ICC
## ----------- ---------- -------
## Fam_ID_14 211 0.000
## ------------------------------
summ(pair_CDI, digits=3) # child: p = .22; parent: p = .66
## MODEL INFO:
## Observations: 278
## Dependent Variable: CDI
## Type: Mixed effects linear regression
##
## MODEL FIT:
## AIC = 1302.501, BIC = 1349.660
## Pseudo-R² (fixed effects) = 0.094
## Pseudo-R² (total) = 0.094
##
## FIXED EFFECTS:
## ---------------------------------------------------------------------
## Est. S.E. t val. d.f. p
## ------------------------- -------- ------- -------- --------- -------
## (Intercept) 3.464 0.302 11.486 267.000 0.000
## z_new_PRS 0.218 0.176 1.239 267.000 0.216
## bioparent_z_new_PRS 0.073 0.168 0.437 267.000 0.663
## MAge_RQ2_CDI 0.185 0.098 1.895 267.000 0.059
## MAge_RQ2_CDI_sq -0.039 0.065 -0.597 267.000 0.551
## Sex2 -1.137 0.313 -3.638 267.000 0.000
## PC1 3.727 5.257 0.709 267.000 0.479
## PC2 5.282 4.533 1.165 267.000 0.245
## PC3 -5.427 4.945 -1.097 267.000 0.273
## PC4 0.697 5.619 0.124 267.000 0.901
## Which_CDI 0.728 0.307 2.376 267.000 0.018
## ---------------------------------------------------------------------
##
## p values calculated using Satterthwaite d.f.
##
## RANDOM EFFECTS:
## -------------------------------------
## Group Parameter Std. Dev.
## ----------- ------------- -----------
## Fam_ID_14 (Intercept) 0.000
## Residual 2.483
## -------------------------------------
##
## Grouping variables:
## ------------------------------
## Group # groups ICC
## ----------- ---------- -------
## Fam_ID_14 211 0.000
## ------------------------------
#Find change between models that don't vs. do include PRS_parent
anova(child_CDI, pair_CDI) # p = .66
## refitting model(s) with ML (instead of REML)
## Data: RQ2_CDI
## Models:
## child_CDI: CDI ~ z_new_PRS + MAge_RQ2_CDI + MAge_RQ2_CDI_sq + Sex2 + PC1 + PC2 + PC3 + PC4 + Which_CDI + (1 | Fam_ID_14)
## pair_CDI: CDI ~ z_new_PRS + bioparent_z_new_PRS + MAge_RQ2_CDI + MAge_RQ2_CDI_sq + Sex2 + PC1 + PC2 + PC3 + PC4 + Which_CDI + (1 | Fam_ID_14)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## child_CDI 12 1307.5 1351.0 -641.74 1283.5
## pair_CDI 13 1309.3 1356.4 -641.64 1283.3 0.1985 1 0.6559
anova(parent_CDI, pair_CDI) # p = .21
## refitting model(s) with ML (instead of REML)
## Data: RQ2_CDI
## Models:
## parent_CDI: CDI ~ bioparent_z_new_PRS + MAge_RQ2_CDI + MAge_RQ2_CDI_sq + Sex2 + PC1 + PC2 + PC3 + PC4 + Which_CDI + (1 | Fam_ID_14)
## pair_CDI: CDI ~ z_new_PRS + bioparent_z_new_PRS + MAge_RQ2_CDI + MAge_RQ2_CDI_sq + Sex2 + PC1 + PC2 + PC3 + PC4 + Which_CDI + (1 | Fam_ID_14)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## parent_CDI 12 1308.9 1352.4 -642.44 1284.9
## pair_CDI 13 1309.3 1356.4 -641.64 1283.3 1.5935 1 0.2068
# Scatter plot
effect_plot(child_CDI, pred = z_new_PRS, interval = FALSE, plot.points = TRUE, x.label = "Child PRS score", y.label = "CDI Internalizing Score", main.title = "Unadjusted Assocation Between Child PRS and Child CDI")

effect_plot(parent_CDI, pred = bioparent_z_new_PRS, interval = FALSE, plot.points = TRUE, x.label = "Parent PRS score", y.label = "CDI Internalizing Score", main.title = "Unadjusted Assocation Between Parent PRS and Child CDI")

effect_plot(pair_CDI, pred = z_new_PRS, interval = FALSE, plot.points = TRUE, x.label = "Child PRS score", y.label = "CDI Internalizing Score", main.title = "Adjusted Assocation Between Child PRS and Child CDI")

effect_plot(pair_CDI, pred = bioparent_z_new_PRS, interval = FALSE, plot.points = TRUE, x.label = "Parent PRS score", y.label = "CDI Internalizing Score", main.title = "Adjusted Assocation Between Parent PRS and Child CDI")
