This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
##Paso 1.Instalar paquetes y llamar librerias
#install.packages("riem")
library(riem)
#install.packages('tidyverse')
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.0 ✔ readr 2.1.4
## ✔ forcats 1.0.0 ✔ stringr 1.5.0
## ✔ ggplot2 3.4.1 ✔ tibble 3.1.8
## ✔ lubridate 1.9.2 ✔ tidyr 1.3.0
## ✔ purrr 1.0.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the ]8;;http://conflicted.r-lib.org/conflicted package]8;; to force all conflicts to become errors
#install.package("lubridate")
library(lubridate)
#install.package("ggplot2")
library(ggplot2)
#install.package("plotly")
library(plotly)
##
## Attaching package: 'plotly'
##
## The following object is masked from 'package:ggplot2':
##
## last_plot
##
## The following object is masked from 'package:stats':
##
## filter
##
## The following object is masked from 'package:graphics':
##
## layout
##Paso 2. buscar la red (pais) ejemplo mexico y copiar code
view(riem_networks())
##Paso 3 buscar la estacion (ciudad) ejemplo monterrey
view(riem_stations("MX__ASOS"))
##Paso 4. obtener informacion
monterrey <- riem_measures("MMMY")
str(monterrey)
## tibble [82,166 × 32] (S3: tbl_df/tbl/data.frame)
## $ station : chr [1:82166] "MMMY" "MMMY" "MMMY" "MMMY" ...
## $ valid : POSIXct[1:82166], format: "2014-01-01 00:16:00" "2014-01-01 00:49:00" ...
## $ lon : num [1:82166] -100 -100 -100 -100 -100 ...
## $ lat : num [1:82166] 25.8 25.8 25.8 25.8 25.8 ...
## $ tmpf : num [1:82166] 48.2 48.2 48.2 46.4 46.4 46.4 46.4 46.4 46.4 46.4 ...
## $ dwpf : num [1:82166] 46.4 46.4 46.4 46.4 46.4 44.6 44.6 44.6 44.6 44.6 ...
## $ relh : num [1:82166] 93.5 93.5 93.5 100 100 ...
## $ drct : num [1:82166] 0 120 120 120 110 100 110 130 60 0 ...
## $ sknt : num [1:82166] 0 3 5 6 5 5 4 3 3 0 ...
## $ p01i : num [1:82166] 0 0 0 0 0 0 0 0 0 0 ...
## $ alti : num [1:82166] 30.3 30.3 30.3 30.3 30.3 ...
## $ mslp : num [1:82166] NA NA NA NA NA ...
## $ vsby : num [1:82166] 4 3 1 0.25 0.12 0.12 0.06 0.06 0.06 0.12 ...
## $ gust : num [1:82166] NA NA NA NA NA NA NA NA NA NA ...
## $ skyc1 : chr [1:82166] "SCT" "SCT" "SCT" "VV " ...
## $ skyc2 : chr [1:82166] "BKN" "BKN" "BKN" NA ...
## $ skyc3 : chr [1:82166] "OVC" "OVC" "OVC" NA ...
## $ skyc4 : chr [1:82166] NA NA NA NA ...
## $ skyl1 : num [1:82166] 700 300 200 200 100 100 100 100 100 100 ...
## $ skyl2 : num [1:82166] 1200 400 300 NA NA NA NA NA NA NA ...
## $ skyl3 : num [1:82166] 4000 900 500 NA NA NA NA NA NA NA ...
## $ skyl4 : num [1:82166] NA NA NA NA NA NA NA NA NA NA ...
## $ wxcodes : chr [1:82166] NA "BR" "BR" "FG" ...
## $ ice_accretion_1hr: logi [1:82166] NA NA NA NA NA NA ...
## $ ice_accretion_3hr: logi [1:82166] NA NA NA NA NA NA ...
## $ ice_accretion_6hr: logi [1:82166] NA NA NA NA NA NA ...
## $ peak_wind_gust : logi [1:82166] NA NA NA NA NA NA ...
## $ peak_wind_drct : logi [1:82166] NA NA NA NA NA NA ...
## $ peak_wind_time : logi [1:82166] NA NA NA NA NA NA ...
## $ feel : num [1:82166] 48.2 47.2 45.6 42.9 43.5 ...
## $ metar : chr [1:82166] "MMMY 010016Z 00000KT 4SM SCT007 BKN012 OVC040 09/08 A3028 RMK 8/5// BR" "MMMY 010049Z 12003KT 3SM BR SCT003 BKN004 OVC009 09/08 A3028 RMK 8/5// -DZ OCNL" "MMMY 010116Z 12005KT 1SM BR SCT002 BKN003 OVC005 09/08 A3028 RMK 8/6// -DZ OCNL" "MMMY 010120Z 12006KT 1/4SM FG VV002 08/08 A3029 RMK 8//// BC FG MOV SE/NW" ...
## $ snowdepth : logi [1:82166] NA NA NA NA NA NA ...
##Poxi=formarto de fecha que tiene hora
##Paso 5. agregar temperatura en grados centigrados
monterrey$temp<- (monterrey$tmpf-32)/1.8
str(monterrey)
## tibble [82,166 × 33] (S3: tbl_df/tbl/data.frame)
## $ station : chr [1:82166] "MMMY" "MMMY" "MMMY" "MMMY" ...
## $ valid : POSIXct[1:82166], format: "2014-01-01 00:16:00" "2014-01-01 00:49:00" ...
## $ lon : num [1:82166] -100 -100 -100 -100 -100 ...
## $ lat : num [1:82166] 25.8 25.8 25.8 25.8 25.8 ...
## $ tmpf : num [1:82166] 48.2 48.2 48.2 46.4 46.4 46.4 46.4 46.4 46.4 46.4 ...
## $ dwpf : num [1:82166] 46.4 46.4 46.4 46.4 46.4 44.6 44.6 44.6 44.6 44.6 ...
## $ relh : num [1:82166] 93.5 93.5 93.5 100 100 ...
## $ drct : num [1:82166] 0 120 120 120 110 100 110 130 60 0 ...
## $ sknt : num [1:82166] 0 3 5 6 5 5 4 3 3 0 ...
## $ p01i : num [1:82166] 0 0 0 0 0 0 0 0 0 0 ...
## $ alti : num [1:82166] 30.3 30.3 30.3 30.3 30.3 ...
## $ mslp : num [1:82166] NA NA NA NA NA ...
## $ vsby : num [1:82166] 4 3 1 0.25 0.12 0.12 0.06 0.06 0.06 0.12 ...
## $ gust : num [1:82166] NA NA NA NA NA NA NA NA NA NA ...
## $ skyc1 : chr [1:82166] "SCT" "SCT" "SCT" "VV " ...
## $ skyc2 : chr [1:82166] "BKN" "BKN" "BKN" NA ...
## $ skyc3 : chr [1:82166] "OVC" "OVC" "OVC" NA ...
## $ skyc4 : chr [1:82166] NA NA NA NA ...
## $ skyl1 : num [1:82166] 700 300 200 200 100 100 100 100 100 100 ...
## $ skyl2 : num [1:82166] 1200 400 300 NA NA NA NA NA NA NA ...
## $ skyl3 : num [1:82166] 4000 900 500 NA NA NA NA NA NA NA ...
## $ skyl4 : num [1:82166] NA NA NA NA NA NA NA NA NA NA ...
## $ wxcodes : chr [1:82166] NA "BR" "BR" "FG" ...
## $ ice_accretion_1hr: logi [1:82166] NA NA NA NA NA NA ...
## $ ice_accretion_3hr: logi [1:82166] NA NA NA NA NA NA ...
## $ ice_accretion_6hr: logi [1:82166] NA NA NA NA NA NA ...
## $ peak_wind_gust : logi [1:82166] NA NA NA NA NA NA ...
## $ peak_wind_drct : logi [1:82166] NA NA NA NA NA NA ...
## $ peak_wind_time : logi [1:82166] NA NA NA NA NA NA ...
## $ feel : num [1:82166] 48.2 47.2 45.6 42.9 43.5 ...
## $ metar : chr [1:82166] "MMMY 010016Z 00000KT 4SM SCT007 BKN012 OVC040 09/08 A3028 RMK 8/5// BR" "MMMY 010049Z 12003KT 3SM BR SCT003 BKN004 OVC009 09/08 A3028 RMK 8/5// -DZ OCNL" "MMMY 010116Z 12005KT 1SM BR SCT002 BKN003 OVC005 09/08 A3028 RMK 8/6// -DZ OCNL" "MMMY 010120Z 12006KT 1/4SM FG VV002 08/08 A3029 RMK 8//// BC FG MOV SE/NW" ...
## $ snowdepth : logi [1:82166] NA NA NA NA NA NA ...
## $ temp : num [1:82166] 9 9 9 8 8 8 8 8 8 8 ...
##Paso 6. Filtrar informacion - Ejemplo de Enero a marzo 2023
este_ano <- subset(monterrey, valid>= as.POSIXct("2023-01-01 00:00")& valid<= as.POSIXct("2023-03-10 07:00"))
view(este_ano)
##Paso 7. graficar temperatura en 2023
plot(este_ano$valid, este_ano$temp)
view(este_ano)
##Paso 8. Promediar informarcion por dia
este_ano <- este_ano %>%
mutate(date=ymd_hms(valid), date= as.Date(date)) %>%
group_by(date) %>%
summarize_if(is.numeric, ~mean(.,na.rm=TRUE))
##Paso 9. graficar temperatura 2023
plot(este_ano$date, este_ano$temp, type="l", main="Temperatura Promedio en Monterrey", xlab="Fecha", ylab="Centigrados")
view(este_ano)