Our NCAA March Madness winning team algorithm is based on each teams’ turnovers per game. We used the formula: TURNOVER/GAME COUNT based on the 2022 NCAA March Madness data set to find the top ten teams with the lowest (best) turnover percentage. In testing our algorithm with the 2022 NCAA March Madness data set, we found three teams had the lowest turnover percentage per game at 9% and seven teams had the second lowest at 10%. To use this algorithm for our Top Ten March Madness Team Bracket, apart from firstly using ascending numerical order, we used alphabetical order to rank the teams with the same turnover percentages.
library(dplyr)
## Warning: replacing previous import 'lifecycle::last_warnings' by
## 'rlang::last_warnings' when loading 'tibble'
## Warning: replacing previous import 'ellipsis::check_dots_unnamed' by
## 'rlang::check_dots_unnamed' when loading 'tibble'
## Warning: replacing previous import 'ellipsis::check_dots_used' by
## 'rlang::check_dots_used' when loading 'tibble'
## Warning: replacing previous import 'ellipsis::check_dots_empty' by
## 'rlang::check_dots_empty' when loading 'tibble'
## Warning: replacing previous import 'lifecycle::last_warnings' by
## 'rlang::last_warnings' when loading 'pillar'
## Warning: replacing previous import 'ellipsis::check_dots_unnamed' by
## 'rlang::check_dots_unnamed' when loading 'pillar'
## Warning: replacing previous import 'ellipsis::check_dots_used' by
## 'rlang::check_dots_used' when loading 'pillar'
## Warning: replacing previous import 'ellipsis::check_dots_empty' by
## 'rlang::check_dots_empty' when loading 'pillar'
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.0 ──
## ✓ ggplot2 3.3.2 ✓ purrr 0.3.4
## ✓ tibble 3.0.4 ✓ stringr 1.4.0
## ✓ tidyr 1.1.2 ✓ forcats 0.5.0
## ✓ readr 1.4.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(DT)
library(forcats)
library(readxl)
Turnover_Rate_NCAA_1_ <- read_excel("Turnover Rate NCAA (1).xlsx")
#View(Turnover_Rate_NCAA_1_)
ggplot(Turnover_Rate_NCAA_1_, aes(x = Team,y = Turnover_Rate)) +
geom_col() +
labs(
x = "Team",
y = "Turnover Percent",
title = "Average Turnover Percentage Per Game",
subtitle = "2022 NCAA March Madness Teams"
) +
theme(axis.text.x = element_text(angle=90, vjust=1, hjust=1,size=5))
Turnover_Rate_NCAA_1_[Turnover_Rate_NCAA_1_$Turnover_Rate>=9 & Turnover_Rate_NCAA_1_$Turnover_Rate <=10,]
## # A tibble: 10 x 4
## Team Turnovers Game_Count Turnover_Rate
## <chr> <dbl> <dbl> <dbl>
## 1 Colorado St. 300 30 10
## 2 Duke 340 34 10
## 3 Iowa 315 35 9
## 4 Miami FL 330 33 10
## 5 Notre Dame 320 32 10
## 6 Richmond 350 35 10
## 7 UCLA 288 32 9
## 8 Vermont 330 33 10
## 9 Villanova 330 33 10
## 10 Wisconsin 279 31 9
ggplot(Turnover_Rate_NCAA_1_[Turnover_Rate_NCAA_1_$Turnover_Rate>=9 & Turnover_Rate_NCAA_1_$Turnover_Rate <=10,], aes(x = Team,y = Turnover_Rate)) +
geom_col() +
labs(
x = "Team",
y = "Turnover Percent",
title = "Top Ten Best Average Turnovers Per Game",
subtitle = "2022 NCAA March Madness Teams"
) +
theme(axis.text.x = element_text(angle=45, vjust=1, hjust=1,size=10))
ggplot(Turnover_Rate_NCAA_1_[Turnover_Rate_NCAA_1_$Turnover_Rate>=9 & Turnover_Rate_NCAA_1_$Turnover_Rate <=10,], aes(x = forcats::fct_reorder(Team, Turnover_Rate), y = Turnover_Rate)) +
geom_col() +
labs(
x = "Team",
y = "Turnover Percent",
title = "Top Ten Best Average Turnovers Per Game",
subtitle = "2022 NCAA March Madness Teams"
) +
theme(axis.text.x = element_text(angle=45, vjust=1, hjust=1,size=10))