# Lisset HernƔndez A01284611
#Santiago Llaguno A01721838
#Evelyn DĆaz- A00829373
#A01721951 Jenaro MartĆnez
library(ggplot2)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(nycflights13)
data(airlines)
aeronom <- flights %>%
left_join(airlines, by="carrier")
aeronom
## # A tibble: 336,776 Ć 20
## year month day dep_time sched_deā¦Ā¹ dep_dā¦Ā² arr_tā¦Ā³ schedā¦ā“ arr_dā¦āµ carrier
## <int> <int> <int> <int> <int> <dbl> <int> <int> <dbl> <chr>
## 1 2013 1 1 517 515 2 830 819 11 UA
## 2 2013 1 1 533 529 4 850 830 20 UA
## 3 2013 1 1 542 540 2 923 850 33 AA
## 4 2013 1 1 544 545 -1 1004 1022 -18 B6
## 5 2013 1 1 554 600 -6 812 837 -25 DL
## 6 2013 1 1 554 558 -4 740 728 12 UA
## 7 2013 1 1 555 600 -5 913 854 19 B6
## 8 2013 1 1 557 600 -3 709 723 -14 EV
## 9 2013 1 1 557 600 -3 838 846 -8 B6
## 10 2013 1 1 558 600 -2 753 745 8 AA
## # ⦠with 336,766 more rows, 10 more variables: flight <int>, tailnum <chr>,
## # origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
## # minute <dbl>, time_hour <dttm>, name <chr>, and abbreviated variable names
## # ¹āsched_dep_time, ²ādep_delay, ³āarr_time, ā“āsched_arr_time, āµāarr_delay
#2. ObtĆ©n una tabla que indique el nĆŗmero de vuelos por aerolĆnea.
aeronoms <- select(aeronom, carrier, flight, tailnum, name)
df <- aeronoms %>%
group_by(name) %>%
summarise(count=n()) %>%
arrange(desc(count))
df
## # A tibble: 16 Ć 2
## name count
## <chr> <int>
## 1 United Air Lines Inc. 58665
## 2 JetBlue Airways 54635
## 3 ExpressJet Airlines Inc. 54173
## 4 Delta Air Lines Inc. 48110
## 5 American Airlines Inc. 32729
## 6 Envoy Air 26397
## 7 US Airways Inc. 20536
## 8 Endeavor Air Inc. 18460
## 9 Southwest Airlines Co. 12275
## 10 Virgin America 5162
## 11 AirTran Airways Corporation 3260
## 12 Alaska Airlines Inc. 714
## 13 Frontier Airlines Inc. 685
## 14 Mesa Airlines Inc. 601
## 15 Hawaiian Airlines Inc. 342
## 16 SkyWest Airlines Inc. 32
#1. Elabora una grĆ”fica de barras que refleje el nĆŗmero de vuelos por aerolĆnea que han salido de NYC en el aƱo 2013.
flight <- flights
flights_nyc_2013 <- filter(flights, origin %in% c("EWR", "JFK", "LGA") & year == 2013)
flights_per_airline <- count(flights_nyc_2013, carrier)
ggplot(data = flights_per_airline, aes(x = carrier, y = n)) +
geom_bar(stat = "identity", fill = "steelblue") +
ggtitle("Number of flights per airline from NYC in 2013") +
xlab("Airline") +
ylab("Number of flights")

#3. Elabora una grĆ”fica de barras que refleje el nĆŗmero de vuelos por aerolĆnea que han salido de NYC en el aƱo 2013 para cada uno de los tres aeropuertos. ( John F. Kennedy, LaGuardia and Newark Liberty)
aeropuertos <- select(aeronom, carrier, name, origin)
df2 <- aeropuertos %>%
group_by(origin, carrier) %>%
summarize(count=n())
## `summarise()` has grouped output by 'origin'. You can override using the
## `.groups` argument.
ggplot(data = df2, mapping = aes(x = carrier, y = count)) +
geom_col() +
facet_wrap(~ origin) +
theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
ggtitle("Number of flights per airline from NYC in 2013 divided by airport")
