#biomass analysis

Table 1.1: Results of regression for total biomass
  Total Biomass 2019 Total Biomass 2020
Predictors Estimates Conf. Int (95%) p-Value Estimates Conf. Int (95%) p-Value
(Intercept) 146.24 108.71 – 196.73 <0.001 326.18 238.24 – 414.12 <0.001
Exclosure (Yes) 2.03 1.36 – 3.02 <0.001 215.54 115.57 – 315.50 <0.001
Fire Energy (Low) 1.04 0.69 – 1.59 0.843 7.24 -116.09 – 130.58 0.907
Fire Energy (High) 0.81 0.51 – 1.29 0.378 -114.50 -238.90 – 9.90 0.071
Exclosure (Yes)*Fire
Energy (Low)
0.80 0.45 – 1.40 0.432 -77.85 -216.80 – 61.10 0.267
Exclosure (Yes)*Fire
Energy (High)
1.50 0.83 – 2.69 0.179 -21.99 -164.83 – 120.86 0.760
Random Effects
σ2   29223.54
τ00   17745.24 Plot
Observations 142 142

##grass and forb biomass

Table 1.1: Results of regression for biomass by functional group 2019
  Grass Biomass Forb Biomass
Predictors Estimates Conf. Int (95%) p-Value Estimates Conf. Int (95%) p-Value
(Intercept) 69.43 39.37 – 122.44 <0.001 77.88 50.25 – 120.71 <0.001
Exclosure (Yes) 2.60 1.16 – 5.79 0.020 1.55 0.84 – 2.89 0.163
Fire Energy (Low) 1.42 0.64 – 3.16 0.394 0.70 0.38 – 1.30 0.262
Fire Energy (High) 0.43 0.19 – 0.97 0.041 1.31 0.70 – 2.46 0.393
Exclosure (Yes)*Fire
Energy (Low)
0.47 0.15 – 1.45 0.188 1.48 0.62 – 3.57 0.377
Exclosure (Yes)*Fire
Energy (High)
1.48 0.47 – 4.65 0.506 1.64 0.68 – 3.99 0.271
Observations 142 142
Table 1.1: Results of regression for biomass by functional group 2020
  Grass Biomass Forb Biomass
Predictors Estimates Conf. Int (95%) p-Value Estimates Conf. Int (95%) p-Value
(Intercept) 316.99 223.55 – 410.44 <0.001 6.58 2.68 – 16.14 <0.001
Exclosure (Yes) 128.59 9.55 – 247.62 0.035 13.64 3.89 – 47.92 <0.001
Fire Energy (Low) 2.80 -128.02 – 133.62 0.966 2.07 0.60 – 7.19 0.251
Fire Energy (High) -147.65 -282.77 – -12.53 0.033 7.37 2.07 – 26.23 0.002
Exclosure (Yes)*Fire
Energy (Low)
-12.88 -178.48 – 152.73 0.877 0.19 0.03 – 1.10 0.064
Exclosure (Yes)*Fire
Energy (High)
6.56 -164.41 – 177.53 0.939 0.16 0.03 – 0.95 0.043
Random Effects
σ2 41585.77  
τ00 11042.06 Plot  
Observations 141 142

Assessment of differences in variance for 2019 plant community data among fire treatments
  Df Sum Sq Mean Sq F value Pr(>F)
Groups 2 0.64 0.32 19.55 0
Residuals 138 2.26 0.02 NA NA
Assessment of differences in variance for 2019 plant community data between herbivory treatments
  Df Sum Sq Mean Sq F value Pr(>F)
Groups 1 0.01 0.01 0.37 0.55
Residuals 139 2.87 0.02 NA NA
Results of PERMANOVA assessing differences in plant communities by fire treatment, herbivory treatment, and their interaction in 2019
  Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)
trt2019$herb 1 0.34 0.34 1.04 0.01 0.25
trt2019$fire 2 2.89 1.45 4.41 0.06 0.59
trt2019\(herb:trt2019\)fire 2 0.34 0.17 0.51 0.01 0.92
Residuals 135 44.27 0.33 NA 0.93 NA
Total 140 47.84 NA NA 1 NA

Assessment of differences in variance for 2020 plant community data between herbivory treatments
  Df Sum Sq Mean Sq F value Pr(>F)
Groups 1 0.03 0.03 1.19 0.28
Residuals 140 4.03 0.03 NA NA
Assessment of differences in variance for 2020 plant community data among fire treatments
  Df Sum Sq Mean Sq F value Pr(>F)
Groups 2 0.17 0.09 2.29 0.11
Residuals 139 5.24 0.04 NA NA
Results of PERMANOVA assessing differences in plant communities by fire treatment, herbivory treatment, and their interaction in 2020
  Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)
trt2020$herb 1 0.43 0.43 1.62 0.01 0.06
trt2020$fire 2 2.9 1.45 5.52 0.07 0.27
trt2020\(herb:trt2020\)fire 2 0.42 0.21 0.8 0.01 0.49
Residuals 136 35.79 0.26 NA 0.91 NA
Total 141 39.54 NA NA 1 NA