GEI Diseases

Nosema Analysis

# Declare functions fn0: the actual value
fn0 <- function(x) x
# fn1: mean value
fn1 <- function(x) mean(x, na.rm = T)
# fn2: standard deviation
fn2 <- function(x) sd(x, na.rm = T)
# fn2.1: standard error
fn2.1 <- function(x) sd(x, na.rm = T)/sqrt(length(x))
# fn3: number of non-missing/measured samples
fn3 <- function(x) length(which(!is.na(x)))
# fn3.1: number of total samples
fn3.1 <- function(x) length((x))
# fn4: number of samples where nosema is greater than zero/positive
fn4 <- function(x) length(which(x > 0))
# fn5: number of samples where nosema is zero/negative
fn5 <- function(x) length(which(x == 0))
# fn6: % of samples where nosema is present out of total number of samples
fn6 <- function(x) round((length(which(x > 0))/length(x)) * 100, 1)
# fn6.1: % of samples where nosema is present out of measured samples
fn6.1 <- function(x) round((length(which(x > 0))/length(which(!is.na(x)))) * 100, 1)
# fn7: highest nosema count
fn7 <- function(x) max(x, na.rm = T)
# fn8: lowest nosema count
fn8 <- function(x) min(x, na.rm = T)
# fn9: sum of nosema count
fn9 <- function(x) c(sum = sum(x, na.rm = T))

CONTENTS

  1. Nosema Prevalence

    1.1 Nosema prevalence by Genotype

    1.2 Nosema prevalence by Genotype & Year

    1.3 Nosema prevalence by Genotype & Season

    1.4 Nosema prevalence by Location & Season

    1.5 Nosema prevalence by Subspecies & Season

    1.6 Nosema prevalence by Country & Season

    1.7 Nosema prevalence by WeatherCluster1 & Season

    1.8 Nosema prevalence by WeatherCluster2 & Season

    1.9 Nosema prevalence by Originbreed & Season

  2. Nosema titres

    2.1 Nosema spores by Genotype & Year & Season

    2.2 Nosema spores by Location & Year & Season

    2.3 Nosema spores by Country & Year & Season

    2.4 Nosema spores by WeatherCluster2 & Year & Season

    2.5 Nosema spores by Subspecies & Season

  3. Histogram

  4. ANOVA

    4.1 Significance values for overall factors

    4.2 Pairwise Tukey's HSD

  5. GLM

    5.1 GLM Summary

    5.2 GLM ANOVA Chi-Sq Test

  6. Individual Variable Comparisons

We have 621 colonies for which there is data for two years and three seasons. Therefore, 621x2x3 produces 3726 datapoints. The data looks something like this

##   code 2010_Autumn 2010_Spring 2010_Summer 2011_Autumn 2011_Spring 2011_Summer
## 1    1           0           0          NA          NA          NA          NA
## 2    2           0           0          NA          NA          NA          NA
## 3    3           0           0          NA          NA          NA          NA
## 4    4           0           0          NA          NA          NA          NA
## 5    5           0           0          NA          NA          NA          NA
## 6    6           0           0          NA          NA          NA          NA

Here we see by Year and season, the total number of colonies available, measured (data availbale) and the percentage of colonies measured (percent data available of total).

##   Year Season Total Measured Percent
## 1 2010 Autumn   621      315    50.7
## 2 2010 Spring   621      575    92.6
## 3 2010 Summer   621      163    26.2
## 4 2011 Autumn   621       85    13.7
## 5 2011 Spring   621      147    23.7
## 6 2011 Summer   621      117    18.8

Now, we take out only the samples with nosema data into a new table.

Originally we had 3726 datapoints and now we have 1402 datapoints. So, 37.6% is the amount of available nosema data.

All through, PPA is percentage of positive samples out of measured samples. PPT is the percentage of positive samples out of all possible samples. In this doesn't make any sense, ignore PPT and only consider PPA.

1. Nosema Prevalence

1.1 Nosema prevalence by Genotype

plot of chunk unnamed-chunk-8

1.2 Nosema prevalence by Genotype & Year

plot of chunk unnamed-chunk-9

1.3 Nosema prevalence by Genotype & Season

plot of chunk unnamed-chunk-11

1.4 Nosema prevalence by Location & Season

plot of chunk unnamed-chunk-12

1.5 Nosema prevalence by Subspecies & Season

plot of chunk unnamed-chunk-13

1.6 Nosema prevalence by Country & Season

plot of chunk unnamed-chunk-14

1.7 Nosema prevalence by WeatherCluster 1 & Season

plot of chunk unnamed-chunk-15

1.8 Nosema prevalence by WeatherCluster 2 & Season

plot of chunk unnamed-chunk-16

1.9 Nosema prevalence by Originbreed & Season

plot of chunk unnamed-chunk-17

2 Nosema titres

2.1 Nosema spores by Genotype & Year & Season

plot of chunk unnamed-chunk-18 plot of chunk unnamed-chunk-18

2.2 Nosema spores by Location & Year & Season

plot of chunk unnamed-chunk-19 plot of chunk unnamed-chunk-19

2.3 Nosema spores by Country & Year & Season

plot of chunk unnamed-chunk-20 plot of chunk unnamed-chunk-20

2.4 Nosema spores by WeatherCluster2 & Year & Season

plot of chunk unnamed-chunk-21 plot of chunk unnamed-chunk-21

2.5 Nosema spores by Subspecies & Season

plot of chunk unnamed-chunk-22

3. Histogram

plot of chunk unnamed-chunk-23 plot of chunk unnamed-chunk-23

4. ANOVA

4.1 Significance values for overall factors

##               Df Sum Sq Mean Sq F value  Pr(>F)    
## Year           1    312     312   41.66 1.5e-10 ***
## Season         2    826     413   55.13 < 2e-16 ***
## Region         1     13      13    1.67    0.20    
## Surstatus      1      8       8    1.05    0.31    
## Orignbreed     1     19      19    2.49    0.11    
## Genotype      15    517      34    4.60 1.2e-08 ***
## Location      18   1291      72    9.57 < 2e-16 ***
## Residuals   1362  10202       7                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 2324 observations deleted due to missingness
##                   Df Sum Sq Mean Sq F value Pr(>F)    
## Country            9    888    98.7   11.25 <2e-16 ***
## Subspecies         4    107    26.7    3.04  0.017 *  
## WeatherCluster1    1     25    25.2    2.87  0.090 .  
## Residuals       1387  12167     8.8                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 2324 observations deleted due to missingness

4.2 Pairwise Tukey's HSD

##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = nosema1 ~ Year + Season + Region + Surstatus + Orignbreed + Genotype + Location, data = nos1)
## 
## $Year
##            diff    lwr   upr p adj
## 2011-2010 1.091 0.7595 1.423     0
## 
## $Season
##                   diff     lwr     upr  p adj
## Spring-Autumn  1.55682  1.1566  1.9571 0.0000
## Summer-Autumn  0.07344 -0.4269  0.5738 0.9367
## Summer-Spring -1.48338 -1.9355 -1.0313 0.0000
## 
## $Region
##       diff     lwr    upr  p adj
## 2-1 0.1923 -0.1051 0.4898 0.2049
## 
## $Surstatus
##        diff     lwr    upr  p adj
## 1-0 -0.1684 -0.5016 0.1648 0.3217
## 
## $Orignbreed
##       diff      lwr    upr  p adj
## 1-0 0.2476 -0.06138 0.5566 0.1162
## 
## $Genotype
##           diff       lwr     upr  p adj
## 2-1    1.94040  0.484508  3.3963 0.0006
## 3-1    0.97201 -0.554990  2.4990 0.7078
## 4-1    1.49122 -0.039643  3.0221 0.0658
## 5-1    1.63925  0.328351  2.9501 0.0020
## 6-1    1.06646 -0.334074  2.4670 0.3896
## 7-1    0.69276 -0.854359  2.2399 0.9781
## 8-1    1.81951  0.254647  3.3844 0.0069
## 9-1    2.46068  0.941159  3.9802 0.0000
## 10-1   2.10683  0.645845  3.5678 0.0001
## 11-1   1.45375 -0.007239  2.9147 0.0528
## 12-1   0.79401 -0.766265  2.3543 0.9339
## 13-1   2.42480  0.075325  4.7743 0.0350
## 14-1   1.14863 -0.560748  2.8580 0.6190
## 15-1   1.25779 -1.425700  3.9413 0.9669
## 16-1   1.18942 -0.480378  2.8592 0.5136
## 3-2   -0.96839 -2.316273  0.3795 0.4976
## 4-2   -0.44918 -1.801437  0.9031 0.9991
## 5-2   -0.30115 -1.398199  0.7959 0.9999
## 6-2   -0.87394 -2.076668  0.3288 0.4765
## 7-2   -1.24763 -2.618274  0.1230 0.1233
## 8-2   -0.12089 -1.511521  1.2697 1.0000
## 9-2    0.52028 -0.819124  1.8597 0.9946
## 10-2   0.16643 -1.106180  1.4390 1.0000
## 11-2  -0.48665 -1.759265  0.7860 0.9955
## 12-2  -1.14639 -2.531857  0.2391 0.2475
## 13-2   0.48440 -1.752806  2.7216 1.0000
## 14-2  -0.79177 -2.343231  0.7597 0.9324
## 15-2  -0.68261 -3.268374  1.9032 0.9999
## 16-2  -0.75097 -2.258722  0.7568 0.9444
## 4-3    0.51920 -0.909328  1.9477 0.9974
## 5-3    0.66724 -0.522565  1.8570 0.8643
## 6-3    0.09445 -1.193445  1.3823 1.0000
## 7-3   -0.27925 -1.725196  1.1667 1.0000
## 8-3    0.84749 -0.617415  2.3124 0.8331
## 9-3    1.48867  0.072293  2.9050 0.0281
## 10-3   1.13482 -0.218567  2.4882 0.2273
## 11-3   0.48173 -0.871652  1.8351 0.9979
## 12-3  -0.17800 -1.638013  1.2820 1.0000
## 13-3   1.45279 -0.831332  3.7369 0.7090
## 14-3   0.17661 -1.441760  1.7950 1.0000
## 15-3   0.28578 -2.340682  2.9122 1.0000
## 16-3   0.21741 -1.359107  1.7939 1.0000
## 5-4    0.14803 -1.046717  1.3428 1.0000
## 6-4   -0.42476 -1.717221  0.8677 0.9992
## 7-4   -0.79845 -2.248473  0.6516 0.8804
## 8-4    0.32829 -1.140640  1.7972 1.0000
## 9-4    0.96946 -0.451070  2.3900 0.5917
## 10-4   0.61561 -0.742123  1.9734 0.9754
## 11-4  -0.03747 -1.395207  1.3203 1.0000
## 12-4  -0.69720 -2.161252  0.7668 0.9619
## 13-4   0.93358 -1.353118  3.2203 0.9911
## 14-4  -0.34259 -1.964605  1.2794 1.0000
## 15-4  -0.23343 -2.862131  2.3953 1.0000
## 16-4  -0.30179 -1.882048  1.2785 1.0000
## 6-5   -0.57279 -1.595228  0.4497 0.8652
## 7-5   -0.94648 -2.162000  0.2690 0.3493
## 8-5    0.18026 -1.057754  1.4183 1.0000
## 9-5    0.82143 -0.358751  2.0016 0.5562
## 10-5   0.46758 -0.636215  1.5714 0.9871
## 11-5  -0.18550 -1.289299  0.9183 1.0000
## 12-5  -0.84524 -2.077451  0.3870 0.5826
## 13-5   0.78555 -1.360122  2.9312 0.9972
## 14-5  -0.49062 -1.906902  0.9257 0.9985
## 15-5  -0.38146 -2.888449  2.1255 1.0000
## 16-5  -0.44982 -1.818081  0.9184 0.9992
## 7-6   -0.37370 -1.685384  0.9380 0.9999
## 8-6    0.75305 -0.579516  2.0856 0.8570
## 9-6    1.39422  0.115205  2.6732 0.0176
## 10-6   1.04037 -0.168520  2.2493 0.1903
## 11-6   0.38729 -0.821604  1.5962 0.9994
## 12-6  -0.27245 -1.599626  1.0547 1.0000
## 13-6   1.35834 -0.843243  3.5599 0.7535
## 14-6   0.08217 -1.417466  1.5818 1.0000
## 15-6   0.19133 -2.363676  2.7463 1.0000
## 16-6   0.12296 -1.331400  1.5773 1.0000
## 8-7    1.12674 -0.359130  2.6126 0.3972
## 9-7    1.76791  0.329870  3.2060 0.0027
## 10-7   1.41407  0.038017  2.7901 0.0368
## 11-7   0.76098 -0.615067  2.1370 0.8768
## 12-7   0.10125 -1.379798  1.5823 1.0000
## 13-7   1.73203 -0.565585  4.0297 0.4081
## 14-7   0.45586 -1.181512  2.0932 0.9999
## 15-7   0.56502 -2.073184  3.2032 1.0000
## 16-7   0.49666 -1.099357  2.0927 0.9996
## 9-8    0.64117 -0.815937  2.0983 0.9814
## 10-8   0.28732 -1.108637  1.6833 1.0000
## 11-8  -0.36576 -1.761721  1.0302 0.9999
## 12-8  -1.02549 -2.525058  0.4741 0.5880
## 13-8   0.60529 -1.704308  2.9149 0.9999
## 14-8  -0.67088 -2.325023  0.9833 0.9916
## 15-8  -0.56172 -3.210366  2.0869 1.0000
## 16-8  -0.63008 -2.243298  0.9831 0.9943
## 10-9  -0.35385 -1.698784  0.9911 0.9999
## 11-9  -1.00693 -2.351869  0.3380 0.4208
## 12-9  -1.66667 -3.118851 -0.2145 0.0084
## 13-9  -0.03588 -2.315002  2.2432 1.0000
## 14-9  -1.31205 -2.923367  0.2993 0.2730
## 15-9  -1.20289 -3.825004  1.4192 0.9726
## 16-9  -1.27125 -2.840526  0.2980 0.2814
## 11-10 -0.65308 -1.931520  0.6254 0.9318
## 12-10 -1.31282 -2.703640  0.0780 0.0894
## 13-10  0.31797 -1.922555  2.5585 1.0000
## 14-10 -0.95820 -2.514443  0.5980 0.7564
## 15-10 -0.84904 -3.437677  1.7396 0.9992
## 16-10 -0.91741 -2.430072  0.5953 0.7767
## 12-11 -0.65973 -2.050556  0.7311 0.9632
## 13-11  0.97105 -1.269471  3.2116 0.9839
## 14-11 -0.30512 -1.861359  1.2511 1.0000
## 15-11 -0.19596 -2.784592  2.3927 1.0000
## 16-11 -0.26432 -1.776988  1.2483 1.0000
## 13-12  1.63079 -0.675710  3.9373 0.5273
## 14-12  0.35461 -1.295193  2.0044 1.0000
## 15-12  0.46378 -2.182166  3.1097 1.0000
## 16-12  0.39541 -1.213358  2.0042 1.0000
## 14-13 -1.27617 -3.686030  1.1337 0.9100
## 15-13 -1.16701 -4.342945  2.0089 0.9971
## 16-13 -1.23537 -3.617326  1.1466 0.9232
## 15-14  0.10916 -2.627353  2.8457 1.0000
## 16-14  0.04080 -1.712953  1.7945 1.0000
## 16-15 -0.06837 -2.780337  2.6436 1.0000
## 
## $Location
##           diff       lwr      upr  p adj
## 2-1    1.94658 -0.203051  4.09620 0.1356
## 3-1    0.06836 -2.440940  2.57767 1.0000
## 4-1   -0.33086 -2.714272  2.05254 1.0000
## 5-1    1.49596  0.007114  2.98480 0.0473
## 6-1    2.21925  0.694864  3.74363 0.0000
## 7-1    0.02405 -2.323193  2.37128 1.0000
## 8-1    1.45986 -1.049441  3.96916 0.8736
## 9-1   -0.54496 -3.864458  2.77453 1.0000
## 10-1   3.23687  0.727566  5.74617 0.0009
## 11-1   2.57459  0.958406  4.19077 0.0000
## 12-1   0.53689 -1.304439  2.37821 1.0000
## 13-1  -0.16464 -2.314261  1.98499 1.0000
## 14-1   2.40073  0.880197  3.92127 0.0000
## 15-1   1.87044  0.210689  3.53018 0.0101
## 16-1   1.32940 -0.397982  3.05678 0.4047
## 17-1   1.42867 -0.037639  2.89498 0.0667
## 18-1   2.27220  0.759036  3.78537 0.0000
## 19-1   2.34898  0.873946  3.82402 0.0000
## 21-1   0.65141 -1.906940  3.20976 1.0000
## 3-2   -1.87821 -4.665540  0.90911 0.6669
## 4-2   -2.27744 -4.951991  0.39711 0.2204
## 5-2   -0.45062 -2.371359  1.47013 1.0000
## 6-2    0.27267 -1.675747  2.22109 1.0000
## 7-2   -1.92253 -4.564900  0.71984 0.5184
## 8-2   -0.48671 -3.274040  2.30061 1.0000
## 9-2   -2.49154 -6.025889  1.04281 0.5816
## 10-2   1.29029 -1.497034  4.07762 0.9855
## 11-2   0.62801 -1.393035  2.64906 0.9999
## 12-2  -1.40969 -3.614926  0.79555 0.7551
## 13-2  -2.11121 -4.579709  0.35729 0.2136
## 14-2   0.45416 -1.491253  2.39957 1.0000
## 15-2  -0.07614 -2.132192  1.97991 1.0000
## 16-2  -0.61718 -2.728204  1.49385 1.0000
## 17-2  -0.51791 -2.421232  1.38542 1.0000
## 18-2   0.32563 -1.614028  2.26528 1.0000
## 19-2   0.40241 -1.507651  2.31247 1.0000
## 21-2  -1.29517 -4.126728  1.53640 0.9873
## 4-3   -0.39923 -3.370579  2.57212 1.0000
## 5-3    1.42760 -0.888642  3.74383 0.8073
## 6-3    2.15089 -0.188355  4.49013 0.1184
## 7-3   -0.04432 -2.986736  2.89810 1.0000
## 8-3    1.39150 -1.681756  4.46476 0.9887
## 9-3   -0.61332 -4.377279  3.15063 1.0000
## 10-3   3.16851  0.095250  6.24176 0.0347
## 11-3   2.50623  0.106154  4.90630 0.0295
## 12-3   0.46852 -2.088580  3.02563 1.0000
## 13-3  -0.23300 -3.020325  2.55433 1.0000
## 14-3   2.33237 -0.004364  4.66911 0.0511
## 15-3   1.80207 -0.627548  4.23170 0.4794
## 16-3   1.26103 -1.215281  3.73735 0.9608
## 17-3   1.36031 -0.941510  3.66212 0.8575
## 18-3   2.20384 -0.128106  4.53579 0.0913
## 19-3   2.28062 -0.026766  4.58801 0.0571
## 21-3   0.58305 -2.530384  3.69648 1.0000
## 5-4    1.82682 -0.352394  4.00604 0.2458
## 6-4    2.55011  0.346462  4.75376 0.0066
## 7-4    0.35491 -2.480906  3.19073 1.0000
## 8-4    1.79073 -1.180625  4.76208 0.8354
## 9-4   -0.21410 -3.895317  3.46712 1.0000
## 10-4   3.56773  0.596382  6.53908 0.0035
## 11-4   2.90545  0.637332  5.17358 0.0010
## 12-4   0.86775 -1.565931  3.30143 0.9995
## 13-4   0.16623 -2.508321  2.84078 1.0000
## 14-4   2.73160  0.530607  4.93259 0.0019
## 15-4   2.20130 -0.098066  4.50067 0.0802
## 16-4   1.66026 -0.688390  4.00891 0.5761
## 17-4   1.75953 -0.404349  3.92342 0.2990
## 18-4   2.60307  0.407162  4.79897 0.0044
## 19-4   2.67985  0.510041  4.84966 0.0021
## 21-4   0.98227 -2.030612  3.99516 0.9998
## 6-5    0.72329 -0.456587  1.90316 0.8143
## 7-5   -1.47191 -3.611513  0.66769 0.6287
## 8-5   -0.03610 -2.352335  2.28014 1.0000
## 9-5   -2.04092 -5.216989  1.13515 0.7471
## 10-5   1.74091 -0.575329  4.05715 0.4524
## 11-5   1.07863 -0.217676  2.37494 0.2583
## 12-5  -0.95907 -2.527141  0.60900 0.8172
## 13-5  -1.66059 -3.581337  0.26015 0.1972
## 14-5   0.90477 -0.270127  2.07968 0.4034
## 15-5   0.37448 -0.975753  1.72471 1.0000
## 16-5  -0.16656 -1.599112  1.26599 1.0000
## 17-5  -0.06729 -1.171110  1.03653 1.0000
## 18-5   0.77624 -0.389103  1.94159 0.6874
## 19-5   0.85302 -0.262366  1.96842 0.4173
## 21-5  -0.84455 -3.213835  1.52473 0.9995
## 7-6   -2.19520 -4.359682 -0.03072 0.0424
## 8-6   -0.75939 -3.098626  1.57985 0.9999
## 9-6   -2.76421 -5.957092  0.42867 0.1952
## 10-6   1.01762 -1.321619  3.35686 0.9929
## 11-6   0.35534 -0.981631  1.69232 1.0000
## 12-6  -1.68236 -3.284211 -0.08051 0.0274
## 13-6  -2.38388 -4.332302 -0.43546 0.0025
## 14-6   0.18149 -1.038136  1.40111 1.0000
## 15-6  -0.34881 -1.738130  1.04051 1.0000
## 16-6  -0.88985 -2.359301  0.57960 0.8296
## 17-6  -0.79058 -1.941884  0.36073 0.6321
## 18-6   0.05295 -1.157466  1.26338 1.0000
## 19-6   0.12974 -1.032667  1.29214 1.0000
## 21-6  -1.56784 -3.959615  0.82394 0.7149
## 8-7    1.43582 -1.506602  4.37824 0.9745
## 9-7   -0.56901 -4.226913  3.08890 1.0000
## 10-7   3.21282  0.270405  6.15524 0.0161
## 11-7   2.55054  0.320460  4.78063 0.0080
## 12-7   0.51284 -1.885430  2.91111 1.0000
## 13-7  -0.18868 -2.831050  2.45369 1.0000
## 14-7   2.37669  0.214916  4.53846 0.0146
## 15-7   1.84639 -0.415464  4.10825 0.2919
## 16-7   1.30535 -1.006588  3.61729 0.9006
## 17-7   1.40462 -0.719355  3.52860 0.6999
## 18-7   2.24816  0.091563  4.40475 0.0302
## 19-7   2.32494  0.194924  4.45495 0.0162
## 21-7   0.62736 -2.356991  3.61172 1.0000
## 9-8   -2.00482 -5.768778  1.75913 0.9401
## 10-8   1.77701 -1.296249  4.85026 0.8796
## 11-8   1.11473 -1.285345  3.51480 0.9850
## 12-8  -0.92298 -3.480079  1.63413 0.9994
## 13-8  -1.62450 -4.411824  1.16283 0.8719
## 14-8   0.94087 -1.395864  3.27761 0.9973
## 15-8   0.41057 -2.019047  2.84020 1.0000
## 16-8  -0.13047 -2.606781  2.34585 1.0000
## 17-8  -0.03119 -2.333009  2.27062 1.0000
## 18-8   0.81234 -1.519606  3.14429 0.9996
## 19-8   0.88912 -1.418266  3.19651 0.9984
## 21-8  -0.80845 -3.921884  2.30498 1.0000
## 10-9   3.78183  0.017876  7.54578 0.0473
## 11-9   3.11955 -0.118164  6.35727 0.0751
## 12-9   1.08185 -2.273927  4.43762 0.9999
## 13-9   0.38033 -3.154025  3.91468 1.0000
## 14-9   2.94570 -0.245352  6.13674 0.1142
## 15-9   2.41540 -0.844282  5.67508 0.4813
## 16-9   1.87436 -1.420272  5.16899 0.8942
## 17-9   1.97363 -1.191935  5.13920 0.7917
## 18-9   2.81716 -0.370378  6.00471 0.1662
## 19-9   2.89395 -0.275674  6.06356 0.1261
## 21-9   1.19637 -2.600457  4.99320 0.9999
## 11-10 -0.66228 -3.062352  1.73779 1.0000
## 12-10 -2.69998 -5.257086 -0.14288 0.0256
## 13-10 -3.40150 -6.188831 -0.61418 0.0026
## 14-10 -0.83613 -3.172870  1.50060 0.9994
## 15-10 -1.36643 -3.796054  1.06319 0.9037
## 16-10 -1.90747 -4.383787  0.56884 0.4029
## 17-10 -1.80820 -4.110016  0.49362 0.3642
## 18-10 -0.96467 -3.296612  1.36728 0.9961
## 19-10 -0.88788 -3.195272  1.41950 0.9985
## 21-10 -2.58546 -5.698890  0.52797 0.2618
## 12-11 -2.03770 -3.727150 -0.34826 0.0032
## 13-11 -2.73922 -4.760275 -0.71817 0.0003
## 14-11 -0.17386 -1.506442  1.15873 1.0000
## 15-11 -0.70415 -2.193621  0.78531 0.9818
## 16-11 -1.24519 -2.809670  0.31928 0.3389
## 17-11 -1.14592 -2.416279  0.12444 0.1402
## 18-11 -0.30239 -1.626556  1.02178 1.0000
## 19-11 -0.22561 -1.506031  1.05482 1.0000
## 21-11 -1.92318 -4.374487  0.52813 0.3666
## 13-12 -0.70152 -2.906758  1.50372 0.9999
## 14-12  1.86385  0.265658  3.46204 0.0058
## 15-12  1.33355 -0.397617  3.06472 0.4028
## 16-12  0.79251 -1.003600  2.58862 0.9916
## 17-12  0.89178 -0.654902  2.43847 0.8822
## 18-12  1.73532  0.144138  3.32650 0.0164
## 19-12  1.81210  0.257133  3.36706 0.0059
## 21-12  0.11452 -2.490727  2.71977 1.0000
## 14-13  2.56537  0.619957  4.51078 0.0005
## 15-13  2.03507 -0.020982  4.09112 0.0562
## 16-13  1.49403 -0.616994  3.60506 0.5738
## 17-13  1.59330 -0.310022  3.49663 0.2481
## 18-13  2.43684  0.497182  4.37649 0.0015
## 19-13  2.51362  0.603559  4.42368 0.0006
## 21-13  0.81604 -2.015518  3.64761 1.0000
## 15-14 -0.53030 -1.915395  0.85480 0.9986
## 16-14 -1.07134 -2.536796  0.39412 0.5088
## 17-14 -0.97206 -2.118272  0.17414 0.2269
## 18-14 -0.12853 -1.334104  1.07704 1.0000
## 19-14 -0.05175 -1.209104  1.10560 1.0000
## 21-14 -1.74932 -4.138652  0.64000 0.5058
## 16-15 -0.54104 -2.150481  1.06840 0.9998
## 17-15 -0.44177 -1.767106  0.88357 0.9998
## 18-15  0.40177 -0.975236  1.77877 1.0000
## 19-15  0.47855 -0.856443  1.81354 0.9994
## 21-15 -1.21903 -3.699272  1.26122 0.9725
## 17-16  0.09927 -1.309839  1.50838 1.0000
## 18-16  0.94281 -0.515004  2.40062 0.7369
## 19-16  1.01959 -0.398606  2.43778 0.5425
## 21-16 -0.67799 -3.203990  1.84801 1.0000
## 18-17  0.84353 -0.292878  1.97995 0.4778
## 19-17  0.92031 -0.164810  2.00544 0.2268
## 21-17 -0.77726 -3.132448  1.57793 0.9998
## 19-18  0.07678 -1.070873  1.22443 1.0000
## 21-18 -1.62079 -4.005437  0.76385 0.6512
## 21-19 -1.69757 -4.058207  0.66306 0.5420
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = nosema1 ~ +Country + Subspecies + WeatherCluster1 + WeatherCluster2, data = nos1)
## 
## $Country
##            diff      lwr       upr  p adj
## 2-1  -1.080e-02 -1.06224  1.040641 1.0000
## 3-1   1.256e+00  0.41849  2.092686 0.0001
## 4-1  -1.458e+00 -2.86363 -0.053333 0.0345
## 5-1   1.209e+00  0.11118  2.307000 0.0179
## 6-1   9.986e-01 -0.05286  2.050017 0.0792
## 7-1   1.150e-01 -1.18757  1.417572 1.0000
## 8-1   1.198e+00  0.10548  2.291324 0.0188
## 9-1   2.073e-01 -1.29873  1.713307 1.0000
## 10-1 -1.458e+00 -3.05689  0.139919 0.1088
## 3-2   1.266e+00  0.37548  2.157297 0.0003
## 4-2  -1.448e+00 -2.88554 -0.009826 0.0468
## 5-2   1.220e+00  0.08042  2.359360 0.0247
## 6-2   1.009e+00 -0.08539  2.104143 0.1005
## 7-2   1.258e-01 -1.21198  1.463589 1.0000
## 8-2   1.209e+00  0.07454  2.343867 0.0260
## 9-2   2.181e-01 -1.31849  1.754668 1.0000
## 10-2 -1.448e+00 -3.07492  0.179546 0.1309
## 4-3  -2.714e+00 -4.00351 -1.424639 0.0000
## 5-3  -4.650e-02 -0.99180  0.898803 1.0000
## 6-3  -2.570e-01 -1.14792  0.633896 0.9960
## 7-3  -1.141e+00 -2.31739  0.036222 0.0665
## 8-3  -5.719e-02 -0.99669  0.882318 1.0000
## 9-3  -1.048e+00 -2.44697  0.350370 0.3417
## 10-3 -2.714e+00 -4.21177 -1.216380 0.0000
## 5-4   2.668e+00  1.19540  4.139755 0.0000
## 6-4   2.457e+00  1.01920  3.894919 0.0000
## 7-4   1.573e+00 -0.05703  3.204007 0.0691
## 8-4   2.657e+00  1.18842  4.125351 0.0000
## 9-4   1.666e+00 -0.13144  3.462993 0.0965
## 10-4  1.013e-14 -1.87531  1.875314 1.0000
## 6-5  -2.105e-01 -1.34998  0.928955 0.9999
## 7-5  -1.094e+00 -2.46870  0.280520 0.2573
## 8-5  -1.069e-02 -1.18854  1.167166 1.0000
## 9-5  -1.002e+00 -2.57054  0.566940 0.5823
## 10-5 -2.668e+00 -4.32521 -1.009940 0.0000
## 7-6  -8.836e-01 -2.22136  0.454213 0.5328
## 8-6   1.998e-01 -0.93484  1.334491 0.9999
## 9-6  -7.913e-01 -2.32787  0.745291 0.8325
## 10-6 -2.457e+00 -4.08429 -0.829830 0.0001
## 8-7   1.083e+00 -0.28723  2.454029 0.2666
## 9-7   9.229e-02 -1.62592  1.810493 1.0000
## 10-7 -1.573e+00 -3.37322  0.226246 0.1476
## 9-8  -9.911e-01 -2.55637  0.574144 0.5945
## 10-8 -2.657e+00 -4.31122 -1.002548 0.0000
## 10-9 -1.666e+00 -3.61781  0.286261 0.1728
## 
## $Subspecies
##         diff     lwr    upr  p adj
## 2-1  0.56998 -0.1191 1.2591 0.1589
## 3-1  0.62266 -0.2730 1.5183 0.3183
## 4-1  0.25194 -0.3001 0.8040 0.7240
## 5-1 -0.43945 -1.5228 0.6439 0.8024
## 3-2  0.05269 -1.0014 1.1068 0.9999
## 4-2 -0.31804 -1.1015 0.4654 0.8020
## 5-2 -1.00942 -2.2271 0.2082 0.1572
## 4-3 -0.37072 -1.3408 0.5993 0.8349
## 5-3 -1.06211 -2.4075 0.2832 0.1972
## 5-4 -0.69139 -1.8371 0.4543 0.4667
## 
## $WeatherCluster1
##         diff     lwr    upr p adj
## 2-1 -0.09274 -0.4154 0.2299 0.573

5. GLM

5.1 GLM Summary

## 
## Call:
## glm(formula = nosema1 ~ Year + Season + Region + Surstatus + 
##     Orignbreed + Subspecies + Genotype + Location, family = "gaussian", 
##     data = nos1)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -4.898  -2.211  -0.678   2.566   6.857  
## 
## Coefficients: (5 not defined because of singularities)
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -0.25666    0.85307   -0.30   0.7636    
## Year2011      0.55217    0.19284    2.86   0.0043 ** 
## SeasonSpring  1.70030    0.17671    9.62  < 2e-16 ***
## SeasonSummer -0.53926    0.23676   -2.28   0.0229 *  
## Region2      -1.27540    0.83846   -1.52   0.1285    
## Surstatus1   -0.12485    0.19330   -0.65   0.5185    
## Orignbreed1   0.23621    0.16677    1.42   0.1569    
## Subspecies2   1.25475    0.61458    2.04   0.0414 *  
## Subspecies3   0.90857    0.85866    1.06   0.2902    
## Subspecies4   1.04966    0.51872    2.02   0.0432 *  
## Subspecies5   0.15985    0.71680    0.22   0.8236    
## Genotype2     0.98468    0.50850    1.94   0.0530 .  
## Genotype3     0.04064    0.54936    0.07   0.9410    
## Genotype4    -0.05950    0.54276   -0.11   0.9127    
## Genotype5     0.67726    0.47076    1.44   0.1505    
## Genotype6     0.45714    0.44922    1.02   0.3090    
## Genotype7    -0.00592    0.54487   -0.01   0.9913    
## Genotype8    -0.46188    0.49424   -0.93   0.3502    
## Genotype9          NA         NA      NA       NA    
## Genotype10   -0.03367    0.52012   -0.06   0.9484    
## Genotype11   -0.76607    0.48727   -1.57   0.1161    
## Genotype12         NA         NA      NA       NA    
## Genotype13    0.26728    1.04776    0.26   0.7987    
## Genotype14   -0.77746    0.84383   -0.92   0.3570    
## Genotype15         NA         NA      NA       NA    
## Genotype16         NA         NA      NA       NA    
## Location2     2.66248    0.64790    4.11  4.2e-05 ***
## Location3     0.84080    0.75226    1.12   0.2639    
## Location4     0.41843    0.71243    0.59   0.5571    
## Location5     0.05599    0.78115    0.07   0.9429    
## Location6     2.83876    0.49037    5.79  8.8e-09 ***
## Location7    -1.76594    0.92664   -1.91   0.0569 .  
## Location8    -0.10070    0.97527   -0.10   0.9178    
## Location9    -2.18351    1.15789   -1.89   0.0595 .  
## Location10    1.67622    0.97703    1.72   0.0865 .  
## Location11    3.61639    0.52405    6.90  7.9e-12 ***
## Location12    0.21785    0.54692    0.40   0.6905    
## Location13   -0.13822    0.67721   -0.20   0.8383    
## Location14    1.60499    0.76695    2.09   0.0366 *  
## Location15    1.04429    0.89383    1.17   0.2429    
## Location16    0.34232    0.92417    0.37   0.7111    
## Location17    2.22144    0.49358    4.50  7.4e-06 ***
## Location18    3.23244    0.52349    6.17  8.7e-10 ***
## Location19    3.38911    0.46559    7.28  5.7e-13 ***
## Location21         NA         NA      NA       NA    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 7.491)
## 
##     Null deviance: 13187  on 1401  degrees of freedom
## Residual deviance: 10202  on 1362  degrees of freedom
##   (2324 observations deleted due to missingness)
## AIC: 6843
## 
## Number of Fisher Scoring iterations: 2
## 
## Call:
## glm(formula = nosema1 ~ Year + Season + Country + WeatherCluster1 + 
##     WeatherCluster2, family = "gaussian", data = nos1)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
##  -4.15   -2.23   -1.23    3.01    6.58  
## 
## Coefficients: (5 not defined because of singularities)
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         0.680      0.252    2.70  0.00711 ** 
## Year2011            0.723      0.195    3.71  0.00022 ***
## SeasonSpring        1.510      0.180    8.37  < 2e-16 ***
## SeasonSummer       -0.214      0.239   -0.89  0.37109    
## Country2            0.503      0.576    0.87  0.38320    
## Country3            1.103      0.266    4.15  3.5e-05 ***
## Country4           -1.435      0.431   -3.33  0.00091 ***
## Country5            0.974      0.343    2.84  0.00456 ** 
## Country6            0.960      0.390    2.46  0.01386 *  
## Country7            0.773      0.620    1.25  0.21278    
## Country8            1.976      0.586    3.37  0.00076 ***
## Country9            0.816      0.661    1.24  0.21687    
## Country10          -0.691      0.684   -1.01  0.31211    
## WeatherCluster12   -0.736      0.476   -1.55  0.12200    
## WeatherCluster22       NA         NA      NA       NA    
## WeatherCluster23       NA         NA      NA       NA    
## WeatherCluster24       NA         NA      NA       NA    
## WeatherCluster25       NA         NA      NA       NA    
## WeatherCluster26       NA         NA      NA       NA    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 8.167)
## 
##     Null deviance: 13187  on 1401  degrees of freedom
## Residual deviance: 11336  on 1388  degrees of freedom
##   (2324 observations deleted due to missingness)
## AIC: 6939
## 
## Number of Fisher Scoring iterations: 2

5.2 GLM ANOVA Chi-Sq Test

## Analysis of Deviance Table
## 
## Model: gaussian, link: identity
## 
## Response: nosema1
## 
## Terms added sequentially (first to last)
## 
## 
##            Df Deviance Resid. Df Resid. Dev Pr(>Chi)    
## NULL                        1401      13187             
## Year        1      312      1400      12875  1.1e-10 ***
## Season      2      826      1398      12049  < 2e-16 ***
## Region      1       13      1397      12037  0.19569    
## Surstatus   1        8      1396      12029  0.30609    
## Orignbreed  1       19      1395      12010  0.11450    
## Subspecies  4      148      1391      11862  0.00056 ***
## Genotype   11      369      1380      11493  8.4e-07 ***
## Location   18     1291      1362      10202  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Analysis of Deviance Table
## 
## Model: gaussian, link: identity
## 
## Response: nosema1
## 
## Terms added sequentially (first to last)
## 
## 
##                 Df Deviance Resid. Df Resid. Dev Pr(>Chi)    
## NULL                             1401      13187             
## Year             1      312      1400      12875  6.4e-10 ***
## Season           2      826      1398      12049  < 2e-16 ***
## Country          9      693      1389      11356  1.7e-14 ***
## WeatherCluster1  1       20      1388      11336     0.12    
## WeatherCluster2  0        0      1388      11336             
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

6. Individual Variable Comparisons

Summary, Boxplot and ANOVA results

## Year
##   Year  Mean      SE   Max Min Measured Positives Negatives  PPA
## 1 2010 1.821 0.09079 7.699   0     1053       293       760 27.8
## 2 2011 2.912 0.17556 7.881   0      349       155       194 44.4

plot of chunk unnamed-chunk-29

##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = nosema1 ~ Year, data = nos2)
## 
## $Year
##            diff    lwr   upr p adj
## 2011-2010 1.091 0.7236 1.459     0
## Season
##   Season  Mean     SE   Max Min Measured Positives Negatives  PPA
## 1 Autumn 1.236 0.1261 7.380   0      400        78       322 19.5
## 2 Spring 2.783 0.1236 7.881   0      722       300       422 41.6
## 3 Summer 1.533 0.1592 6.954   0      280        70       210 25.0

plot of chunk unnamed-chunk-29

##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = nosema1 ~ Season, data = nos2)
## 
## $Season
##                  diff     lwr     upr  p adj
## Spring-Autumn  1.5471  1.1106  1.9836 0.0000
## Summer-Autumn  0.2975 -0.2481  0.8431 0.4071
## Summer-Spring -1.2496 -1.7426 -0.7566 0.0000
## Survival Status
##   Surstatus  Mean      SE   Max Min Measured Positives Negatives  PPA
## 1         0 2.210 0.16804 7.881   0      344       116       228 33.7
## 2         1 2.054 0.09385 7.869   0     1058       332       726 31.4

plot of chunk unnamed-chunk-29

##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = nosema1 ~ Surstatus, data = nos2)
## 
## $Surstatus
##        diff     lwr    upr  p adj
## 1-0 -0.1557 -0.5293 0.2179 0.4138
## Origin Breed
##   Orignbreed  Mean      SE   Max Min Measured Positives Negatives  PPA
## 1          0 2.022 0.09777 7.869   0      962       298       664 31.0
## 2          1 2.247 0.14981 7.881   0      440       150       290 34.1

plot of chunk unnamed-chunk-29

##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = nosema1 ~ Orignbreed, data = nos2)
## 
## $Orignbreed
##      diff     lwr    upr  p adj
## 1-0 0.225 -0.1213 0.5713 0.2027
## Genotype
##    Genotype   Mean     SE   Max Min Measured Positives Negatives  PPA
## 1         1 0.8741 0.2737 7.146   0       67         9        58 13.4
## 2         2 2.6765 0.3095 7.519   0      110        45        65 40.9
## 3         3 1.8095 0.3272 7.881   0       87        23        64 26.4
## 4         4 2.0544 0.3214 7.079   0       86        28        58 32.6
## 5         5 2.3678 0.2126 7.431   0      220        80       140 36.4
## 6         6 1.8082 0.2511 7.792   0      137        38        99 27.7
## 7         7 1.2962 0.2821 6.954   0       82        17        65 20.7
## 8         8 2.6239 0.3802 7.740   0       78        30        48 38.5
## 9         9 3.0247 0.3518 7.740   0       89        41        48 46.1
## 10       10 2.6335 0.3147 7.633   0      108        43        65 39.8
## 11       11 2.1089 0.2957 7.869   0      108        35        73 32.4
## 12       12 1.2974 0.2919 6.954   0       79        16        63 20.3
## 13       13 2.9637 0.7675 7.301   0       21         9        12 42.9
## 14       14 1.4811 0.3626 6.699   0       55        13        42 23.6
## 15       15 1.7601 0.7817 6.954   0       15         4        11 26.7
## 16       16 1.8751 0.3912 7.699   0       60        17        43 28.3

plot of chunk unnamed-chunk-29

##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = nosema1 ~ Genotype, data = nos2)
## 
## $Genotype
##            diff      lwr     upr  p adj
## 2-1    1.802388  0.18958  3.4152 0.0125
## 3-1    0.935384 -0.75620  2.6270 0.8769
## 4-1    1.180264 -0.51559  2.8761 0.5564
## 5-1    1.493655  0.04147  2.9458 0.0364
## 6-1    0.934083 -0.61740  2.4856 0.7862
## 7-1    0.422058 -1.29181  2.1359 1.0000
## 8-1    1.749724  0.01620  3.4832 0.0451
## 9-1    2.150549  0.46726  3.8338 0.0013
## 10-1   1.759361  0.14091  3.3778 0.0182
## 11-1   1.234778 -0.38367  2.8532 0.3861
## 12-1   0.423300 -1.30514  2.1517 1.0000
## 13-1   2.089568 -0.51313  4.6923 0.2964
## 14-1   0.606935 -1.28668  2.5005 0.9994
## 15-1   0.885948 -2.08677  3.8587 0.9997
## 16-1   1.000954 -0.84882  2.8507 0.8945
## 3-2   -0.867004 -2.36017  0.6262 0.8291
## 4-2   -0.622124 -2.12013  0.8759 0.9894
## 5-2   -0.308733 -1.52402  0.9066 1.0000
## 6-2   -0.868306 -2.20067  0.4641 0.6706
## 7-2   -1.380330 -2.89870  0.1380 0.1246
## 8-2   -0.052665 -1.59318  1.4878 1.0000
## 9-2    0.348161 -1.13560  1.8319 1.0000
## 10-2  -0.043028 -1.45280  1.3667 1.0000
## 11-2  -0.567610 -1.97739  0.8422 0.9922
## 12-2  -1.379088 -2.91388  0.1557 0.1372
## 13-2   0.287180 -2.19115  2.7655 1.0000
## 14-2  -1.195454 -2.91413  0.5232 0.5574
## 15-2  -0.916440 -3.78090  1.9480 0.9994
## 16-2  -0.801434 -2.47169  0.8688 0.9594
## 4-3    0.244880 -1.33762  1.8274 1.0000
## 5-3    0.558271 -0.75977  1.8763 0.9871
## 6-3   -0.001301 -1.42801  1.4254 1.0000
## 7-3   -0.513326 -2.11512  1.0885 0.9994
## 8-3    0.814340 -0.80846  2.4371 0.9409
## 9-3    1.215165 -0.35387  2.7842 0.3590
## 10-3   0.823977 -0.67528  2.3232 0.8821
## 11-3   0.299394 -1.19986  1.7986 1.0000
## 12-3  -0.512084 -2.12946  1.1053 0.9995
## 13-3   1.154184 -1.37612  3.6845 0.9740
## 14-3  -0.328449 -2.12125  1.4644 1.0000
## 15-3  -0.049436 -2.95898  2.8601 1.0000
## 16-3   0.065570 -1.68087  1.8120 1.0000
## 5-4    0.313391 -1.01013  1.6369 1.0000
## 6-4   -0.246182 -1.67795  1.1856 1.0000
## 7-4   -0.758206 -2.36451  0.8481 0.9648
## 8-4    0.569459 -1.05779  2.1967 0.9983
## 9-4    0.970285 -0.60335  2.5439 0.7545
## 10-4   0.579096 -0.92498  2.0832 0.9951
## 11-4   0.054514 -1.44956  1.5586 1.0000
## 12-4  -0.756964 -2.37881  0.8649 0.9681
## 13-4   0.909304 -1.62386  3.4425 0.9977
## 14-4  -0.573330 -2.37017  1.2235 0.9994
## 15-4  -0.294316 -3.20635  2.6177 1.0000
## 16-4  -0.179310 -1.92989  1.5713 1.0000
## 6-5   -0.559572 -1.69221  0.5731 0.9480
## 7-5   -1.071597 -2.41812  0.2749 0.3113
## 8-5    0.256069 -1.11538  1.6275 1.0000
## 9-5    0.656894 -0.65049  1.9643 0.9403
## 10-5   0.265706 -0.95706  1.4885 1.0000
## 11-5  -0.258877 -1.48164  0.9639 1.0000
## 12-5  -1.070354 -2.43538  0.2947 0.3370
## 13-5   0.595913 -1.78102  2.9728 1.0000
## 14-5  -0.886720 -2.45565  0.6822 0.8569
## 15-5  -0.607707 -3.38490  2.1695 1.0000
## 16-5  -0.492701 -2.00843  1.0230 0.9993
## 7-6   -0.512024 -1.96509  0.9410 0.9981
## 8-6    0.815641 -0.66055  2.2918 0.8776
## 9-6    1.216467 -0.20040  2.6333 0.1936
## 10-6   0.825278 -0.51391  2.1645 0.7552
## 11-6   0.300695 -1.03849  1.6399 1.0000
## 12-6  -0.510782 -1.98100  0.9594 0.9984
## 13-6   1.155485 -1.28338  3.5944 0.9636
## 14-6  -0.327148 -1.98841  1.3341 1.0000
## 15-6  -0.048134 -2.87852  2.7823 1.0000
## 16-6   0.066872 -1.54425  1.6780 1.0000
## 8-7    1.327665 -0.31836  2.9737 0.2886
## 9-7    1.728491  0.13545  3.3215 0.0187
## 10-7   1.337302 -0.18706  2.8617 0.1654
## 11-7   0.812720 -0.71164  2.3371 0.9054
## 12-7   0.001242 -1.63943  1.6419 1.0000
## 13-7   1.667510 -0.87775  4.2128 0.6620
## 14-7   0.184876 -1.62898  1.9987 1.0000
## 15-7   0.463890 -2.45867  3.3864 1.0000
## 16-7   0.578896 -1.18914  2.3469 0.9992
## 9-8    0.400826 -1.21333  2.0150 1.0000
## 10-8   0.009637 -1.53678  1.5561 1.0000
## 11-8  -0.514946 -2.06136  1.0315 0.9990
## 12-8  -1.326423 -2.98761  0.3348 0.3056
## 13-8   0.339844 -2.21869  2.8984 1.0000
## 14-8  -1.142789 -2.97522  0.6896 0.7384
## 15-8  -0.863775 -3.79790  2.0703 0.9998
## 16-8  -0.748769 -2.53586  1.0383 0.9884
## 10-9  -0.391189 -1.88109  1.0987 0.9999
## 11-9  -0.915771 -2.40567  0.5741 0.7588
## 12-9  -1.727249 -3.33595 -0.1185 0.0215
## 13-9  -0.060981 -2.58575  2.4638 1.0000
## 14-9  -1.543615 -3.32860  0.2414 0.1839
## 15-9  -1.264601 -4.16933  1.6401 0.9832
## 16-9  -1.149595 -2.88801  0.5888 0.6464
## 11-10 -0.524583 -1.94081  0.8916 0.9968
## 12-10 -1.336060 -2.87679  0.2047 0.1802
## 13-10  0.330207 -2.15180  2.8122 1.0000
## 14-10 -1.152426 -2.87640  0.5715 0.6280
## 15-10 -0.873412 -3.74105  1.9942 0.9997
## 16-10 -0.758406 -2.43411  0.9173 0.9758
## 12-11 -0.811478 -2.35220  0.7292 0.9137
## 13-11  0.854790 -1.62722  3.3368 0.9986
## 14-11 -0.627843 -2.35182  1.0961 0.9973
## 15-11 -0.348830 -3.21647  2.5188 1.0000
## 16-11 -0.233824 -1.90953  1.4419 1.0000
## 13-12  1.666268 -0.88883  4.2214 0.6695
## 14-12  0.183634 -1.64399  2.0113 1.0000
## 15-12  0.462648 -2.46848  3.3938 1.0000
## 16-12  0.577654 -1.20451  2.3598 0.9993
## 14-13 -1.482633 -4.15223  1.1870 0.8731
## 15-13 -1.203620 -4.72186  2.3146 0.9987
## 16-13 -1.088614 -3.72730  1.5501 0.9901
## 15-14  0.279013 -2.75245  3.3105 1.0000
## 16-14  0.394020 -1.54875  2.3368 1.0000
## 16-15  0.115006 -2.88927  3.1193 1.0000
## Location
##    Location   Mean     SE   Max Min Measured Positives Negatives  PPA
## 1         1 0.0000 0.0000 0.000   0       60         0        60  0.0
## 2         2 2.6947 0.6197 7.301   0       31        12        19 38.7
## 3         3 1.0151 0.5551 7.000   0       20         3        17 15.0
## 4         4 0.5479 0.3785 6.301   0       23         2        21  8.7
## 5         5 1.4477 0.2230 6.954   0      147        33       114 22.4
## 6         6 2.6676 0.2956 7.869   0      126        50        76 39.7
## 7         7 0.0000 0.0000 0.000   0       24         0        24  0.0
## 8         8 1.2000 0.5506 6.000   0       20         4        16 20.0
## 9         9 0.0000 0.0000 0.000   0       10         0        10  0.0
## 10       10 2.9644 0.7530 6.954   0       20         9        11 45.0
## 11       11 2.7228 0.3245 6.778   0       91        40        51 44.0
## 12       12 0.1154 0.1154 6.000   0       52         1        51  1.9
## 13       13 0.0000 0.0000 0.000   0       31         0        31  0.0
## 14       14 2.6569 0.2770 7.740   0      128        54        74 42.2
## 15       15 2.8901 0.3905 7.699   0       80        33        47 41.2
## 16       16 1.9400 0.3544 7.580   0       67        21        46 31.3
## 17       17 1.7842 0.2245 7.785   0      164        46       118 28.0
## 18       18 3.1576 0.3035 7.881   0      132        60        72 45.5
## 19       19 3.3125 0.2615 7.519   0      157        80        77 51.0
## 20       21 0.0000 0.0000 0.000   0       19         0        19  0.0

plot of chunk unnamed-chunk-29

##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = nosema1 ~ Location, data = nos2)
## 
## $Location
##             diff      lwr      upr  p adj
## 2-1    2.695e+00  0.41906  4.97029 0.0045
## 3-1    1.015e+00 -1.64132  3.67143 0.9986
## 4-1    5.479e-01 -1.97518  3.07102 1.0000
## 5-1    1.448e+00 -0.12842  3.02379 0.1195
## 6-1    2.668e+00  1.05385  4.28130 0.0000
## 7-1    1.567e-14 -2.48481  2.48481 1.0000
## 8-1    1.200e+00 -1.45637  3.85637 0.9890
## 9-1    1.107e-13 -3.51405  3.51405 1.0000
## 10-1   2.964e+00  0.30806  5.62081 0.0117
## 11-1   2.723e+00  1.01191  4.43372 0.0000
## 12-1   1.154e-01 -1.83386  2.06463 1.0000
## 13-1   4.409e-14 -2.27562  2.27562 1.0000
## 14-1   2.657e+00  1.04723  4.26654 0.0000
## 15-1   2.890e+00  1.13306  4.64711 0.0000
## 16-1   1.940e+00  0.11140  3.76864 0.0240
## 17-1   1.784e+00  0.23196  3.33646 0.0073
## 18-1   3.158e+00  1.55579  4.75950 0.0000
## 19-1   3.312e+00  1.75096  4.87395 0.0000
## 21-1  -1.320e-14 -2.70830  2.70830 1.0000
## 3-2   -1.680e+00 -4.63032  1.27107 0.8938
## 4-2   -2.147e+00 -4.97807  0.68455 0.4347
## 5-2   -1.247e+00 -3.28031  0.78633 0.8138
## 6-2   -2.710e-02 -2.08972  2.03552 1.0000
## 7-2   -2.695e+00 -5.49192  0.10256 0.0752
## 8-2   -1.495e+00 -4.44537  1.45602 0.9628
## 9-2   -2.695e+00 -6.43618  1.04683 0.5390
## 10-2   2.698e-01 -2.68093  3.22045 1.0000
## 11-2   2.814e-02 -2.11137  2.16764 1.0000
## 12-2  -2.579e+00 -4.91378 -0.24480 0.0136
## 13-2  -2.695e+00 -5.30785 -0.08150 0.0346
## 14-2  -3.779e-02 -2.09722  2.02164 1.0000
## 15-2   1.954e-01 -1.98115  2.37197 1.0000
## 16-2  -7.547e-01 -2.98941  1.48010 0.9997
## 17-2  -9.105e-01 -2.92535  1.10442 0.9890
## 18-2   4.630e-01 -1.59037  2.51631 1.0000
## 19-2   6.178e-01 -1.40423  2.63979 0.9999
## 21-2  -2.695e+00 -5.69220  0.30285 0.1444
## 4-3   -4.671e-01 -3.61264  2.67837 1.0000
## 5-3    4.326e-01 -2.01936  2.88463 1.0000
## 6-3    1.653e+00 -0.82382  4.12887 0.6843
## 7-3   -1.015e+00 -4.12993  2.09982 0.9999
## 8-3    1.849e-01 -3.06843  3.43833 1.0000
## 9-3   -1.015e+00 -4.99961  2.96951 1.0000
## 10-3   1.949e+00 -1.30400  5.20276 0.8422
## 11-3   1.708e+00 -0.83298  4.24851 0.6715
## 12-3  -8.997e-01 -3.60664  1.80731 0.9998
## 13-3  -1.015e+00 -3.96574  1.93564 0.9997
## 14-3   1.642e+00 -0.83186  4.11553 0.6937
## 15-3   1.875e+00 -0.69699  4.44706 0.5145
## 16-3   9.250e-01 -1.69649  3.54642 0.9995
## 17-3   7.692e-01 -1.66757  3.20589 0.9999
## 18-3   2.143e+00 -0.32603  4.61122 0.1915
## 19-3   2.297e+00 -0.14522  4.74003 0.0957
## 21-3  -1.015e+00 -4.31096  2.28086 0.9999
## 5-4    8.998e-01 -1.40717  3.20671 0.9982
## 6-4    2.120e+00 -0.21315  4.45247 0.1316
## 7-4   -5.479e-01 -3.54994  2.45411 1.0000
## 8-4    6.521e-01 -2.49342  3.79759 1.0000
## 9-4   -5.479e-01 -4.44489  3.34906 1.0000
## 10-4   2.417e+00 -0.72898  5.56202 0.4083
## 11-4   2.175e+00 -0.22616  4.57596 0.1353
## 12-4  -4.325e-01 -3.00885  2.14379 1.0000
## 13-4  -5.479e-01 -3.37922  2.28339 1.0000
## 14-4   2.109e+00 -0.22102  4.43896 0.1361
## 15-4   2.342e+00 -0.09197  4.77630 0.0761
## 16-4   1.392e+00 -1.09421  3.87841 0.9073
## 17-4   1.236e+00 -1.05441  3.52700 0.9325
## 18-4   2.610e+00  0.28512  4.93434 0.0107
## 19-4   2.765e+00  0.46756  5.06152 0.0034
## 21-4  -5.479e-01 -3.73739  2.64156 1.0000
## 6-5    1.220e+00 -0.02914  2.46892 0.0650
## 7-5   -1.448e+00 -3.71269  0.81732 0.7554
## 8-5   -2.477e-01 -2.69968  2.20431 1.0000
## 9-5   -1.448e+00 -4.80990  1.91453 0.9937
## 10-5   1.517e+00 -0.93524  3.96874 0.8025
## 11-5   1.275e+00 -0.09715  2.64741 0.1074
## 12-5  -1.332e+00 -2.99227  0.32767 0.3231
## 13-5  -1.448e+00 -3.48100  0.58563 0.5620
## 14-5   1.209e+00 -0.03456  2.45296 0.0683
## 15-5   1.442e+00  0.01303  2.87177 0.0450
## 16-5   4.923e-01 -1.02418  2.00884 0.9999
## 17-5   3.365e-01 -0.83199  1.50504 1.0000
## 18-5   1.710e+00  0.47631  2.94361 0.0002
## 19-5   1.865e+00  0.68401  3.04553 0.0000
## 21-5  -1.448e+00 -3.95583  1.06046 0.8813
## 7-6   -2.668e+00 -4.95892 -0.37624 0.0060
## 8-6   -1.468e+00 -3.94392  1.00877 0.8545
## 9-6   -2.668e+00 -6.04759  0.71244 0.3552
## 10-6   2.969e-01 -2.17948  2.77320 1.0000
## 11-6   5.524e-02 -1.36009  1.47057 1.0000
## 12-6  -2.552e+00 -4.24793 -0.85646 0.0000
## 13-6  -2.668e+00 -4.73019 -0.60496 0.0008
## 14-6  -1.069e-02 -1.30179  1.28042 1.0000
## 15-6   2.225e-01 -1.24824  1.69326 1.0000
## 16-6  -7.276e-01 -2.28313  0.82802 0.9838
## 17-6  -8.834e-01 -2.10215  0.33542 0.5262
## 18-6   4.901e-01 -0.79129  1.77143 0.9986
## 19-6   6.449e-01 -0.58565  1.87541 0.9484
## 21-6  -2.668e+00 -5.19953 -0.13562 0.0263
## 8-7    1.200e+00 -1.91487  4.31487 0.9984
## 9-7    9.504e-14 -3.87230  3.87230 1.0000
## 10-7   2.964e+00 -0.15044  6.07931 0.0852
## 11-7   2.723e+00  0.36202  5.08361 0.0070
## 12-7   1.154e-01 -2.42345  2.65422 1.0000
## 13-7   2.842e-14 -2.79724  2.79724 1.0000
## 14-7   2.657e+00  0.36841  4.94536 0.0062
## 15-7   2.890e+00  0.49566  5.28451 0.0032
## 16-7   1.940e+00 -0.50742  4.38746 0.3467
## 17-7   1.784e+00 -0.46426  4.03268 0.3447
## 18-7   3.158e+00  0.87465  5.44064 0.0002
## 19-7   3.312e+00  1.05760  5.56731 0.0000
## 21-7  -2.887e-14 -3.15927  3.15927 1.0000
## 9-8   -1.200e+00 -5.18456  2.78456 1.0000
## 10-8   1.764e+00 -1.48895  5.01782 0.9295
## 11-8   1.523e+00 -1.01793  4.06356 0.8419
## 12-8  -1.085e+00 -3.79159  1.62236 0.9974
## 13-8  -1.200e+00 -4.15069  1.75069 0.9969
## 14-8   1.457e+00 -1.01681  3.93058 0.8612
## 15-8   1.690e+00 -0.88194  4.26211 0.7108
## 16-8   7.400e-01 -1.88144  3.36147 1.0000
## 17-8   5.842e-01 -1.85252  3.02094 1.0000
## 18-8   1.958e+00 -0.51098  4.42627 0.3459
## 19-8   2.112e+00 -0.33017  4.55508 0.1968
## 21-8  -1.200e+00 -4.49591  2.09591 0.9993
## 10-9   2.964e+00 -1.02013  6.94900 0.4732
## 11-9   2.723e+00 -0.70466  6.15029 0.3425
## 12-9   1.154e-01 -3.43707  3.66784 1.0000
## 13-9  -6.661e-14 -3.74150  3.74150 1.0000
## 14-9   2.657e+00 -0.72119  6.03496 0.3618
## 15-9   2.890e+00 -0.56065  6.34082 0.2473
## 16-9   1.940e+00 -1.54771  5.42775 0.9123
## 17-9   1.784e+00 -1.56689  5.13531 0.9403
## 18-9   3.158e+00 -0.21672  6.53201 0.1005
## 19-9   3.312e+00 -0.04294  6.66785 0.0578
## 21-9  -1.239e-13 -4.01936  4.01936 1.0000
## 11-10 -2.416e-01 -2.78236  2.29912 1.0000
## 12-10 -2.849e+00 -5.55603 -0.14207 0.0267
## 13-10 -2.964e+00 -5.91513 -0.01374 0.0474
## 14-10 -3.075e-01 -2.78124  2.16614 1.0000
## 15-10 -7.435e-02 -2.64637  2.49767 1.0000
## 16-10 -1.024e+00 -3.64587  1.59704 0.9981
## 17-10 -1.180e+00 -3.61695  1.25650 0.9764
## 18-10  1.932e-01 -2.27541  2.66183 1.0000
## 19-10  3.480e-01 -2.09460  2.79064 1.0000
## 21-10 -2.964e+00 -6.26034  0.33148 0.1437
## 12-11 -2.607e+00 -4.39590 -0.81896 0.0000
## 13-11 -2.723e+00 -4.86232 -0.58331 0.0012
## 14-11 -6.593e-02 -1.47662  1.34476 1.0000
## 15-11  1.673e-01 -1.40950  1.74404 1.0000
## 16-11 -7.828e-01 -2.43897  0.87337 0.9818
## 17-11 -9.386e-01 -2.28342  0.40621 0.6011
## 18-11  4.348e-01 -0.96695  1.83661 0.9999
## 19-11  5.896e-01 -0.76583  1.94511 0.9929
## 21-11 -2.723e+00 -5.31779 -0.12784 0.0277
## 13-12 -1.154e-01 -2.44987  2.21910 1.0000
## 14-12  2.542e+00  0.84964  4.23336 0.0000
## 15-12  2.775e+00  0.94207  4.60733 0.0000
## 16-12  1.825e+00 -0.07675  3.72601 0.0783
## 17-12  1.669e+00  0.03149  3.30616 0.0399
## 18-12  3.042e+00  1.35782  4.72670 0.0000
## 19-12  3.197e+00  1.55097  4.84317 0.0000
## 21-12 -1.154e-01 -2.87333  2.64256 1.0000
## 14-13  2.657e+00  0.59745  4.71632 0.0009
## 15-13  2.890e+00  0.71353  5.06664 0.0005
## 16-13  1.940e+00 -0.29474  4.17477 0.1912
## 17-13  1.784e+00 -0.23067  3.79909 0.1636
## 18-13  3.158e+00  1.10431  5.21099 0.0000
## 19-13  3.312e+00  1.29045  5.33446 0.0000
## 21-13 -5.729e-14 -2.99752  2.99752 1.0000
## 15-14  2.332e-01 -1.23308  1.69948 1.0000
## 16-14 -7.169e-01 -2.26822  0.83448 0.9858
## 17-14 -8.727e-01 -2.08606  0.34071 0.5418
## 18-14  5.008e-01 -0.77547  1.77699 0.9980
## 19-14  6.556e-01 -0.56962  1.88076 0.9375
## 21-14 -2.657e+00 -5.18625 -0.12752 0.0274
## 16-15 -9.501e-01 -2.65384  0.75370 0.9104
## 17-15 -1.106e+00 -2.50889  0.29714 0.3576
## 18-15  2.676e-01 -1.19015  1.72527 1.0000
## 19-15  4.224e-01 -0.99086  1.83560 1.0000
## 21-15 -2.890e+00 -5.51570 -0.26447 0.0143
## 17-16 -1.558e-01 -1.64751  1.33589 1.0000
## 18-16  1.218e+00 -0.32562  2.76088 0.3557
## 19-16  1.372e+00 -0.12888  2.87375 0.1248
## 21-16 -1.940e+00 -4.61407  0.73403 0.5243
## 18-17  1.373e+00  0.17042  2.57645 0.0082
## 19-17  1.528e+00  0.37952  2.67697 0.0004
## 21-17 -1.784e+00 -4.27744  0.70902 0.5518
## 19-18  1.548e-01 -1.06011  1.36973 1.0000
## 21-18 -3.158e+00 -5.68205 -0.63324 0.0016
## 21-19 -3.312e+00 -5.81145 -0.81346 0.0005
## Country
##    Country  Mean     SE   Max Min Measured Positives Negatives  PPA
## 1        1 1.458 0.1999 6.778   0      174        41       133 23.6
## 2        2 1.448 0.2230 6.954   0      147        33       114 22.4
## 3        3 2.714 0.1537 7.881   0      453       186       267 41.1
## 4        4 0.000 0.0000 0.000   0       60         0        60  0.0
## 5        5 2.668 0.2956 7.869   0      126        50        76 39.7
## 6        6 2.457 0.2689 7.699   0      147        54        93 36.7
## 7        7 1.573 0.3377 7.301   0       74        17        57 23.0
## 8        8 2.657 0.2770 7.740   0      128        54        74 42.2
## 9        9 1.666 0.4023 6.954   0       50        13        37 26.0
## 10      10 0.000 0.0000 0.000   0       43         0        43  0.0

plot of chunk unnamed-chunk-29

##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = nosema1 ~ Country, data = nos2)
## 
## $Country
##            diff      lwr       upr  p adj
## 2-1  -1.080e-02 -1.06601  1.044415 1.0000
## 3-1   1.256e+00  0.41549  2.095690 0.0001
## 4-1  -1.458e+00 -2.86868 -0.048290 0.0358
## 5-1   1.209e+00  0.10724  2.310940 0.0186
## 6-1   9.986e-01 -0.05664  2.053791 0.0816
## 7-1   1.150e-01 -1.19224  1.422247 1.0000
## 8-1   1.198e+00  0.10156  2.295247 0.0196
## 9-1   2.073e-01 -1.30413  1.718712 1.0000
## 10-1 -1.458e+00 -3.06262  0.145656 0.1118
## 3-2   1.266e+00  0.37228  2.160495 0.0003
## 4-2  -1.448e+00 -2.89070 -0.004666 0.0485
## 5-2   1.220e+00  0.07633  2.363450 0.0258
## 6-2   1.009e+00 -0.08932  2.108072 0.1033
## 7-2   1.258e-01 -1.21679  1.468390 1.0000
## 8-2   1.209e+00  0.07046  2.347939 0.0271
## 9-2   2.181e-01 -1.32400  1.760182 1.0000
## 10-2 -1.448e+00 -3.08076  0.185386 0.1342
## 4-3  -2.714e+00 -4.00814 -1.420011 0.0000
## 5-3  -4.650e-02 -0.99519  0.902196 1.0000
## 6-3  -2.570e-01 -1.15112  0.637094 0.9962
## 7-3  -1.141e+00 -2.32162  0.040445 0.0687
## 8-3  -5.719e-02 -1.00006  0.885690 1.0000
## 9-3  -1.048e+00 -2.45199  0.355390 0.3470
## 10-3 -2.714e+00 -4.21714 -1.211005 0.0000
## 5-4   2.668e+00  1.19011  4.145039 0.0000
## 6-4   2.457e+00  1.01404  3.900080 0.0000
## 7-4   1.573e+00 -0.06289  3.209859 0.0713
## 8-4   2.657e+00  1.18315  4.130621 0.0000
## 9-4   1.666e+00 -0.13790  3.469443 0.0992
## 10-4  1.013e-14 -1.88204  1.882044 1.0000
## 6-5  -2.105e-01 -1.35407  0.933044 0.9999
## 7-5  -1.094e+00 -2.47363  0.285454 0.2621
## 8-5  -1.069e-02 -1.19277  1.171393 1.0000
## 9-5  -1.002e+00 -2.57617  0.572570 0.5875
## 10-5 -2.668e+00 -4.33116 -1.003990 0.0000
## 7-6  -8.836e-01 -2.22616  0.459014 0.5381
## 8-6   1.998e-01 -0.93891  1.338563 0.9999
## 9-6  -7.913e-01 -2.33338  0.750806 0.8354
## 10-6 -2.457e+00 -4.09013 -0.823990 0.0001
## 8-7   1.083e+00 -0.29215  2.458948 0.2714
## 9-7   9.229e-02 -1.63209  1.816660 1.0000
## 10-7 -1.573e+00 -3.37968  0.232705 0.1512
## 9-8  -9.911e-01 -2.56199  0.579761 0.5997
## 10-8 -2.657e+00 -4.31716 -0.996611 0.0000
## 10-9 -1.666e+00 -3.62481  0.293266 0.1768
## Subspecies
##   Subspecies  Mean     SE   Max Min Measured Positives Negatives  PPA
## 1          1 1.980 0.1071 7.881   0      789       240       549 30.4
## 2          2 2.837 0.2579 7.740   0      167        71        96 42.5
## 3          3 1.869 0.3125 7.301   0       91        26        65 28.6
## 4          4 2.084 0.1784 7.869   0      295        94       201 31.9
## 5          5 1.875 0.3912 7.699   0       60        17        43 28.3

plot of chunk unnamed-chunk-29

##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = nosema1 ~ Subspecies, data = nos2)
## 
## $Subspecies
##          diff     lwr     upr  p adj
## 2-1  0.857728  0.1459 1.56954 0.0090
## 3-1 -0.110538 -1.0357 0.81462 0.9976
## 4-1  0.103908 -0.4664 0.67420 0.9876
## 5-1 -0.104655 -1.2238 1.01446 0.9991
## 3-2 -0.968265 -2.0571 0.12058 0.1082
## 4-2 -0.753820 -1.5631 0.05544 0.0817
## 5-2 -0.962383 -2.2202 0.29543 0.2250
## 4-3  0.214446 -0.7876 1.21651 0.9774
## 5-3  0.005882 -1.3838 1.39560 1.0000
## 5-4 -0.208563 -1.3920 0.97492 0.9891
## Weather Cluster 1
##   WeatherCluster1  Mean     SE   Max Min Measured Positives Negatives  PPA
## 1               1 2.296 0.1060 7.881   0      893       310       583 34.7
## 2               2 1.734 0.1265 7.740   0      509       138       371 27.1

plot of chunk unnamed-chunk-29

##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = nosema1 ~ WeatherCluster1, data = nos2)
## 
## $WeatherCluster1
##        diff     lwr     upr p adj
## 2-1 -0.5623 -0.8954 -0.2292 0.001
## Weather Cluster 2
##   WeatherCluster2  Mean     SE   Max Min Measured Positives Negatives  PPA
## 1               1 1.807 0.2200 7.869   0      186        50       136 26.9
## 2               2 1.573 0.3377 7.301   0       74        17        57 23.0
## 3               3 2.011 0.1790 7.740   0      275        87       188 31.6
## 4               4 0.000 0.0000 0.000   0       43         0        43  0.0
## 5               5 2.256 0.2260 7.699   0      197        67       130 34.0
## 6               6 2.366 0.1261 7.881   0      627       227       400 36.2

plot of chunk unnamed-chunk-29

##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = nosema1 ~ WeatherCluster2, data = nos2)
## 
## $WeatherCluster2
##        diff     lwr      upr  p adj
## 2-1 -0.2336 -1.4263  0.95914 0.9936
## 3-1  0.2034 -0.6204  1.02731 0.9814
## 4-1 -1.8071 -3.2755 -0.33864 0.0061
## 5-1  0.4492 -0.4381  1.33639 0.6995
## 6-1  0.5586 -0.1660  1.28314 0.2383
## 3-2  0.4370 -0.6994  1.57349 0.8825
## 4-2 -1.5735 -3.2375  0.09057 0.0762
## 5-2  0.6827 -0.5005  1.86595 0.5676
## 6-2  0.7921 -0.2745  1.85883 0.2778
## 4-3 -2.0105 -3.4336 -0.58740 0.0008
## 5-3  0.2457 -0.5643  1.05574 0.9546
## 6-3  0.3551 -0.2725  0.98279 0.5890
## 5-4  2.2562  0.7955  3.71694 0.0002
## 6-4  2.3656  0.9976  3.73366 0.0000
## 6-5  0.1094 -0.5994  0.81820 0.9979

The End