Setup
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ ggplot2 3.4.0 ✔ purrr 1.0.1
## ✔ tibble 3.1.8 ✔ dplyr 1.0.10
## ✔ tidyr 1.3.0 ✔ stringr 1.5.0
## ✔ readr 2.1.3 ✔ forcats 0.5.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
library(plotly)
##
## Attaching package: 'plotly'
##
## The following object is masked from 'package:ggplot2':
##
## last_plot
##
## The following object is masked from 'package:stats':
##
## filter
##
## The following object is masked from 'package:graphics':
##
## layout
Get Data
race_region_0306 <- read_delim("~/Downloads/Natality, 2003-2006 (1).txt",delim = "\t", escape_double = FALSE,trim_ws = TRUE)
## Warning: One or more parsing issues, call `problems()` on your data frame for details,
## e.g.:
## dat <- vroom(...)
## problems(dat)
## Rows: 428 Columns: 12
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: "\t"
## chr (9): Notes, Census Region, Census Region Code, Mother's Hispanic Origin,...
## dbl (3): Year, Year Code, Births
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
race_region_0721 <- read_delim("~/Downloads/Natality, 2007-2021 (1).txt", delim = "\t", escape_double = FALSE, trim_ws = TRUE)
## Warning: One or more parsing issues, call `problems()` on your data frame for details,
## e.g.:
## dat <- vroom(...)
## problems(dat)
## Rows: 158 Columns: 12
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: "\t"
## chr (9): Notes, Census Region, Census Region Code, Mother's Hispanic Origin,...
## dbl (3): Year, Year Code, Births
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
race_region_0321 = rbind(race_region_0306,race_region_0721)
Look
glimpse(race_region_0321)
## Rows: 586
## Columns: 12
## $ Notes <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
## $ `Census Region` <chr> "Census Region 1: Northeast", "Census …
## $ `Census Region Code` <chr> "CENS-R1", "CENS-R1", "CENS-R1", "CENS…
## $ `Mother's Hispanic Origin` <chr> "Hispanic or Latino", "Hispanic or Lat…
## $ `Mother's Hispanic Origin Code` <chr> "2135-2", "2135-2", "2135-2", "2135-2"…
## $ `Age of Mother 9` <chr> "Under 15 years", "Under 15 years", "U…
## $ `Age of Mother 9 Code` <chr> "15", "15", "15", "15", "15-19", "15-1…
## $ Year <dbl> 2003, 2004, 2005, 2006, 2003, 2004, 20…
## $ `Year Code` <dbl> 2003, 2004, 2005, 2006, 2003, 2004, 20…
## $ Births <dbl> 257, 257, 263, 251, 14691, 15072, 1524…
## $ `Female Population` <chr> "Not Available", "Not Available", "Not…
## $ `Fertility Rate` <chr> "Not Available", "Not Available", "Not…
Rename and Select
race_region_0321 = race_region_0321 %>%
rename(Region = "Census Region Code",
Origin = "Mother's Hispanic Origin",
Age = "Age of Mother 9 Code",
Fpop = "Female Population",
Rate = "Fertility Rate") %>%
select(Origin, Year, Region, Age, Fpop, Births, Rate)
glimpse(race_region_0321)
## Rows: 586
## Columns: 7
## $ Origin <chr> "Hispanic or Latino", "Hispanic or Latino", "Hispanic or Latino…
## $ Year <dbl> 2003, 2004, 2005, 2006, 2003, 2004, 2005, 2006, 2003, 2004, 200…
## $ Region <chr> "CENS-R1", "CENS-R1", "CENS-R1", "CENS-R1", "CENS-R1", "CENS-R1…
## $ Age <chr> "15", "15", "15", "15", "15-19", "15-19", "15-19", "15-19", "20…
## $ Fpop <chr> "Not Available", "Not Available", "Not Available", "Not Availab…
## $ Births <dbl> 257, 257, 263, 251, 14691, 15072, 15249, 16136, 32675, 33102, 3…
## $ Rate <chr> "Not Available", "Not Available", "Not Available", "Not Availab…
Recode
race_region_0321 = race_region_0321 %>%
mutate(Region = ifelse(Region == "CENS-R1", "NE",Region),
Region = ifelse(Region == "CENS-R2","MW",Region),
Region = ifelse(Region == "CENS-R3","SO",Region),
Region = ifelse(Region == "CENS-R4","WE",Region), Origin = ifelse(Origin == "Hispanic or Latino","HisLat",Origin),
Fpop = as.numeric(Fpop),
Rate = as.numeric(Rate)/1000) %>%
filter(Origin != "Not Reported") %>%
drop_na()
## Warning in mask$eval_all_mutate(quo): NAs introduced by coercion
## Warning in mask$eval_all_mutate(quo): NAs introduced by coercion
head(race_region_0321)
## # A tibble: 6 × 7
## Origin Year Region Age Fpop Births Rate
## <chr> <dbl> <chr> <chr> <dbl> <dbl> <dbl>
## 1 HisLat 2003 NE 15-19 233887 14691 0.0628
## 2 HisLat 2004 NE 15-19 242902 15072 0.0620
## 3 HisLat 2005 NE 15-19 255348 15249 0.0597
## 4 HisLat 2006 NE 15-19 266240 16136 0.0606
## 5 HisLat 2003 NE 20-24 248961 32675 0.131
## 6 HisLat 2004 NE 20-24 251248 33102 0.132
First Plot: Plot the yearly rate for age group 25 - 29 in a grid by Origin and Region
race_region_0321 %>%
filter(Age == "25-29") %>%
ggplot(aes(x = Year, y = Rate)) +
geom_point() +
facet_grid(Origin~Region)
ggtitle("TS Plot of Rate for 25-29 by Origin and Region")
## $title
## [1] "TS Plot of Rate for 25-29 by Origin and Region"
##
## attr(,"class")
## [1] "labels"
Flip the Grid
race_region_0321 %>%
filter(Age == "25-29") %>%
ggplot(aes(x = Year, y = Rate)) +
geom_point() +
facet_grid(Region~Origin)
ggtitle("TS Plot of Rate for 25-29 by Origin and Region")
## $title
## [1] "TS Plot of Rate for 25-29 by Origin and Region"
##
## attr(,"class")
## [1] "labels"
National TFR: Create a plot showing the TFR for the whole country by Origin
g1 = race_region_0321 %>%
group_by(Year,Origin,Age) %>%
summarize(Births = sum(Births),
Fpop = sum(Fpop)) %>%
mutate(Rate = Births/Fpop)%>%
summarize(TFR = sum(Rate) * 5) %>%
ungroup() %>%
ggplot(aes(x = Year,y = TFR, color = Origin)) +
geom_point()
## `summarise()` has grouped output by 'Year', 'Origin'. You can override using
## the `.groups` argument.
## `summarise()` has grouped output by 'Year'. You can override using the
## `.groups` argument.
ggtitle("National TFR by Year and Origin")
## $title
## [1] "National TFR by Year and Origin"
##
## attr(,"class")
## [1] "labels"
ggplotly(g1)
Create a TFR by Origin and Region using plotly.
g2 = race_region_0321 %>%
group_by(Year,Region,Origin,Age) %>%
summarize(Births = sum(Births),
Fpop = sum(Fpop)) %>%
mutate(Rate = Births/Fpop)%>%
summarize(TFR = sum(Rate) * 5) %>%
ungroup() %>%
ggplot(aes(x = Year,y = TFR, color = Origin)) +
geom_point() +
facet_grid(Origin~Region)
## `summarise()` has grouped output by 'Year', 'Region', 'Origin'. You can
## override using the `.groups` argument.
## `summarise()` has grouped output by 'Year', 'Region'. You can override using
## the `.groups` argument.
ggtitle("Regional TFR by Year and Origin")
## $title
## [1] "Regional TFR by Year and Origin"
##
## attr(,"class")
## [1] "labels"
ggplotly(g2)