library(tidyverse)
library(nycflights13)
It’s rare that a data analysis involves only a single table of data. Typically you have many tables of data, and you must combine them to answer the questions that you’re interested in.
Collectively, multiple tables of data are called relational data because it is the relations, not just the individual data sets, that are important.
Relations are always defined between a pair of tables. All other relations are built up from this simple idea: the relations of three or more tables are always a property of the relations between each pair.
nycflights13
We will use the nycflights13
package to learn about
relational data. nycflights13
contains four tibbles that
are related to the flights
table that we used in data
transformation:
airlines
lets you look up the full carrier name from
its abbreviated code:airlines
## # A tibble: 16 × 2
## carrier name
## <chr> <chr>
## 1 9E Endeavor Air Inc.
## 2 AA American Airlines Inc.
## 3 AS Alaska Airlines Inc.
## 4 B6 JetBlue Airways
## 5 DL Delta Air Lines Inc.
## 6 EV ExpressJet Airlines Inc.
## 7 F9 Frontier Airlines Inc.
## 8 FL AirTran Airways Corporation
## 9 HA Hawaiian Airlines Inc.
## 10 MQ Envoy Air
## 11 OO SkyWest Airlines Inc.
## 12 UA United Air Lines Inc.
## 13 US US Airways Inc.
## 14 VX Virgin America
## 15 WN Southwest Airlines Co.
## 16 YV Mesa Airlines Inc.
airports
gives information about each airport,
identified by the faa airport code:airports
## # A tibble: 1,458 × 8
## faa name lat lon alt tz dst tzone
## <chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <chr>
## 1 04G Lansdowne Airport 41.1 -80.6 1044 -5 A America/…
## 2 06A Moton Field Municipal Airport 32.5 -85.7 264 -6 A America/…
## 3 06C Schaumburg Regional 42.0 -88.1 801 -6 A America/…
## 4 06N Randall Airport 41.4 -74.4 523 -5 A America/…
## 5 09J Jekyll Island Airport 31.1 -81.4 11 -5 A America/…
## 6 0A9 Elizabethton Municipal Airport 36.4 -82.2 1593 -5 A America/…
## 7 0G6 Williams County Airport 41.5 -84.5 730 -5 A America/…
## 8 0G7 Finger Lakes Regional Airport 42.9 -76.8 492 -5 A America/…
## 9 0P2 Shoestring Aviation Airfield 39.8 -76.6 1000 -5 U America/…
## 10 0S9 Jefferson County Intl 48.1 -123. 108 -8 A America/…
## # … with 1,448 more rows
planes
gives information about each plane, identified
by its tailnum
:planes
## # A tibble: 3,322 × 9
## tailnum year type manuf…¹ model engines seats speed engine
## <chr> <int> <chr> <chr> <chr> <int> <int> <int> <chr>
## 1 N10156 2004 Fixed wing multi engi… EMBRAER EMB-… 2 55 NA Turbo…
## 2 N102UW 1998 Fixed wing multi engi… AIRBUS… A320… 2 182 NA Turbo…
## 3 N103US 1999 Fixed wing multi engi… AIRBUS… A320… 2 182 NA Turbo…
## 4 N104UW 1999 Fixed wing multi engi… AIRBUS… A320… 2 182 NA Turbo…
## 5 N10575 2002 Fixed wing multi engi… EMBRAER EMB-… 2 55 NA Turbo…
## 6 N105UW 1999 Fixed wing multi engi… AIRBUS… A320… 2 182 NA Turbo…
## 7 N107US 1999 Fixed wing multi engi… AIRBUS… A320… 2 182 NA Turbo…
## 8 N108UW 1999 Fixed wing multi engi… AIRBUS… A320… 2 182 NA Turbo…
## 9 N109UW 1999 Fixed wing multi engi… AIRBUS… A320… 2 182 NA Turbo…
## 10 N110UW 1999 Fixed wing multi engi… AIRBUS… A320… 2 182 NA Turbo…
## # … with 3,312 more rows, and abbreviated variable name ¹manufacturer
weather
gives the weather at each NYC airport for each
hour:weather
## # A tibble: 26,115 × 15
## origin year month day hour temp dewp humid wind_dir wind_speed wind_g…¹
## <chr> <int> <int> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 EWR 2013 1 1 1 39.0 26.1 59.4 270 10.4 NA
## 2 EWR 2013 1 1 2 39.0 27.0 61.6 250 8.06 NA
## 3 EWR 2013 1 1 3 39.0 28.0 64.4 240 11.5 NA
## 4 EWR 2013 1 1 4 39.9 28.0 62.2 250 12.7 NA
## 5 EWR 2013 1 1 5 39.0 28.0 64.4 260 12.7 NA
## 6 EWR 2013 1 1 6 37.9 28.0 67.2 240 11.5 NA
## 7 EWR 2013 1 1 7 39.0 28.0 64.4 240 15.0 NA
## 8 EWR 2013 1 1 8 39.9 28.0 62.2 250 10.4 NA
## 9 EWR 2013 1 1 9 39.9 28.0 62.2 260 15.0 NA
## 10 EWR 2013 1 1 10 41 28.0 59.6 260 13.8 NA
## # … with 26,105 more rows, 4 more variables: precip <dbl>, pressure <dbl>,
## # visib <dbl>, time_hour <dttm>, and abbreviated variable name ¹wind_gust
One way to show the relationships between the different tables is with a drawing:
Here the relations between tables are represented by key matching, which we will discuss in the next.
The variables used to connect each pair of tables are called keys. A key is a variable (or set of variables) that uniquely identifies an observation.
In simple cases, a single variable is sufficient to identify an
observation. For example, each plane is uniquely identified by its
tailnum
.
To verify this, we can check the number of rows in
planes
data set and the amount of unique values in
planes$tailnum
. If the two numbers are exactly the same,
then tainum
can be used to uniquely identify a plane.
planes
## # A tibble: 3,322 × 9
## tailnum year type manuf…¹ model engines seats speed engine
## <chr> <int> <chr> <chr> <chr> <int> <int> <int> <chr>
## 1 N10156 2004 Fixed wing multi engi… EMBRAER EMB-… 2 55 NA Turbo…
## 2 N102UW 1998 Fixed wing multi engi… AIRBUS… A320… 2 182 NA Turbo…
## 3 N103US 1999 Fixed wing multi engi… AIRBUS… A320… 2 182 NA Turbo…
## 4 N104UW 1999 Fixed wing multi engi… AIRBUS… A320… 2 182 NA Turbo…
## 5 N10575 2002 Fixed wing multi engi… EMBRAER EMB-… 2 55 NA Turbo…
## 6 N105UW 1999 Fixed wing multi engi… AIRBUS… A320… 2 182 NA Turbo…
## 7 N107US 1999 Fixed wing multi engi… AIRBUS… A320… 2 182 NA Turbo…
## 8 N108UW 1999 Fixed wing multi engi… AIRBUS… A320… 2 182 NA Turbo…
## 9 N109UW 1999 Fixed wing multi engi… AIRBUS… A320… 2 182 NA Turbo…
## 10 N110UW 1999 Fixed wing multi engi… AIRBUS… A320… 2 182 NA Turbo…
## # … with 3,312 more rows, and abbreviated variable name ¹manufacturer
nrow(planes)
## [1] 3322
length(unique(planes$tailnum))
## [1] 3322
In other cases, multiple variables may be needed. For example, to
identify an observation in weather
you need five variables:
year
, month
, day
,
hour
, and origin
.
Primary Key: A primary key uniquely identifies an
observation in its own table. For example, planes$tailnum
is a primary key because it uniquely identifies each plane in the planes
table.
Once you’ve identified the primary keys in your tables, it’s good
practice to verify that they do indeed uniquely identify each
observation. One way to do that is to count()
the primary
keys and look for entries where n is greater than one:
planes %>%
count(tailnum) %>%
filter(n > 1)
## # A tibble: 0 × 2
## # … with 2 variables: tailnum <chr>, n <int>
weather %>%
count(year, month, day, hour, origin) %>%
filter(n > 1)
## # A tibble: 3 × 6
## year month day hour origin n
## <int> <int> <int> <int> <chr> <int>
## 1 2013 11 3 1 EWR 2
## 2 2013 11 3 1 JFK 2
## 3 2013 11 3 1 LGA 2
So we see that in the weather
data set, there are a few
records that match the same time and the same airport. Let’s look at one
of them in detail:
temp <- filter(weather, year == 2013, month == 11, day == 3, hour == 1)
glimpse(temp)
## Rows: 6
## Columns: 15
## $ origin <chr> "EWR", "EWR", "JFK", "JFK", "LGA", "LGA"
## $ year <int> 2013, 2013, 2013, 2013, 2013, 2013
## $ month <int> 11, 11, 11, 11, 11, 11
## $ day <int> 3, 3, 3, 3, 3, 3
## $ hour <int> 1, 1, 1, 1, 1, 1
## $ temp <dbl> 51.98, 50.00, 53.96, 51.98, 55.04, 53.96
## $ dewp <dbl> 39.02, 39.02, 37.94, 37.94, 39.02, 39.92
## $ humid <dbl> 61.15, 65.80, 54.51, 58.62, 54.67, 58.89
## $ wind_dir <dbl> 310, 290, 320, 310, 330, 310
## $ wind_speed <dbl> 6.90468, 5.75390, 9.20624, 6.90468, 9.20624, 8.05546
## $ wind_gust <dbl> NA, NA, NA, NA, NA, NA
## $ precip <dbl> 0, 0, 0, 0, 0, 0
## $ pressure <dbl> 1009.8, 1010.5, 1009.8, 1010.5, 1009.3, 1010.2
## $ visib <dbl> 10, 10, 10, 10, 10, 10
## $ time_hour <dttm> 2013-11-03 01:00:00, 2013-11-03 01:00:00, 2013-11-03 01:00:…
Now it is clear that there are indeed multiple records for 1:00am on
Nov 3 in 2013 for all three airports. We may think how to handle these
records. Since there aren’t many of such records, let’s ignore the few
exceptions for now and still consider the combination of
year
, month
, day
,
hour
, and origin
as a primary key for
weather
data.
Sometimes a table doesn’t have an explicit primary key: each row is an observation, but no combination of variables reliably identifies it.
For example, there are some samples in the diamonds
data
set that are identical in all columns. This can be found by using the
duplicated()
function, which returns a vector of
TRUE
of FALSE
of whether there are duplicates
of each row.
sum(duplicated(diamonds))
## [1] 146
diamonds[duplicated(diamonds), ] # Verify the duplicates
## # A tibble: 146 × 10
## carat cut color clarity depth table price x y z
## <dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>
## 1 0.79 Ideal G SI1 62.3 57 2898 5.9 5.85 3.66
## 2 0.79 Ideal G SI1 62.3 57 2898 5.9 5.85 3.66
## 3 0.79 Ideal G SI1 62.3 57 2898 5.9 5.85 3.66
## 4 0.79 Ideal G SI1 62.3 57 2898 5.9 5.85 3.66
## 5 1.52 Good E I1 57.3 58 3105 7.53 7.42 4.28
## 6 1 Fair E SI2 67 53 3136 6.19 6.13 4.13
## 7 1 Fair F SI2 65.1 55 3265 6.26 6.23 4.07
## 8 0.9 Very Good I VS2 58.4 62 3334 6.29 6.35 3.69
## 9 1 Ideal E SI2 62.9 56 3450 6.32 6.3 3.97
## 10 1 Fair H SI1 65.5 57 3511 6.26 6.21 4.08
## # … with 136 more rows
Another example is the flights
data set. What’s the
primary key in the flights
table? You might think it would
be the date plus the flight or tail number, but neither of those are
unique:
flights %>%
count(year, month, day, flight) %>%
filter(n > 1)
## # A tibble: 29,768 × 5
## year month day flight n
## <int> <int> <int> <int> <int>
## 1 2013 1 1 1 2
## 2 2013 1 1 3 2
## 3 2013 1 1 4 2
## 4 2013 1 1 11 3
## 5 2013 1 1 15 2
## 6 2013 1 1 21 2
## 7 2013 1 1 27 4
## 8 2013 1 1 31 2
## 9 2013 1 1 32 2
## 10 2013 1 1 35 2
## # … with 29,758 more rows
flights %>%
count(year, month, day, tailnum) %>%
filter(n > 1)
## # A tibble: 64,928 × 5
## year month day tailnum n
## <int> <int> <int> <chr> <int>
## 1 2013 1 1 N0EGMQ 2
## 2 2013 1 1 N11189 2
## 3 2013 1 1 N11536 2
## 4 2013 1 1 N11544 3
## 5 2013 1 1 N11551 2
## 6 2013 1 1 N12540 2
## 7 2013 1 1 N12567 2
## 8 2013 1 1 N13123 2
## 9 2013 1 1 N13538 3
## 10 2013 1 1 N13566 3
## # … with 64,918 more rows
So the same flight or plane may fly more than once on the same day. They cannot be used as the primary key.
If a table lacks a primary key, it’s sometimes useful to add one with
mutate()
and row_number()
. That makes it
easier to match observations if you’ve done some filtering and want to
check back in with the original data. This is called a surrogate
key.
flights %>%
mutate(id = row_number()) %>% # The `row_number()` function returns the row number of each observation
select(id, everything()) %>%
arrange(id) %>%
print()
## # A tibble: 336,776 × 20
## id year month day dep_time sched_dep_…¹ dep_d…² arr_t…³ sched…⁴ arr_d…⁵
## <int> <int> <int> <int> <int> <int> <dbl> <int> <int> <dbl>
## 1 1 2013 1 1 517 515 2 830 819 11
## 2 2 2013 1 1 533 529 4 850 830 20
## 3 3 2013 1 1 542 540 2 923 850 33
## 4 4 2013 1 1 544 545 -1 1004 1022 -18
## 5 5 2013 1 1 554 600 -6 812 837 -25
## 6 6 2013 1 1 554 558 -4 740 728 12
## 7 7 2013 1 1 555 600 -5 913 854 19
## 8 8 2013 1 1 557 600 -3 709 723 -14
## 9 9 2013 1 1 557 600 -3 838 846 -8
## 10 10 2013 1 1 558 600 -2 753 745 8
## # … with 336,766 more rows, 10 more variables: carrier <chr>, flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## # hour <dbl>, minute <dbl>, time_hour <dttm>, and abbreviated variable names
## # ¹sched_dep_time, ²dep_delay, ³arr_time, ⁴sched_arr_time, ⁵arr_delay
We successfully create a surrogate key for the flights
table.
mpg
data set.A foreign key uniquely identifies an observation in
another table. For example, flights$tailnum
is a foreign
key to the planes
table because it appears in the
flights
table where it matches each flight to a unique
plane in the planes
data set.
A primary key and the corresponding foreign key in another table form a relation.
Relations are typically one-to-many. For example, each flight has one plane, but each plane has many flights. In other data, you’ll occasionally see a 1-to-1 relationship. You can think of this as a special case of 1-to-many. You can model many-to-many relations with a many-to-1 relation plus a 1-to-many relation. For example, in this data there’s a many-to-many relationship between airlines and airports: each airline flies to many airports; each airport hosts many airlines.
origin
in flights
and faa
in airports
The variable student_name
in a table
student information
for the college and a table
grade score
of our course.
The most common place to find relational data is in a relational
database management system (or RDBMS), a term that encompasses almost
all modern databases. If you’ve used a database before, you’ve almost
certainly used SQL. If so, you should find the concepts in this chapter
familiar, although their expression in dplyr
is a little
different.
Generally, dplyr
is a little easier to use than SQL
because dplyr
is specialised to do data analysis: it makes
common data analysis operations easier, at the expense of making it more
difficult to do other things that aren’t commonly needed for data
analysis.
There are three families of verbs designed to work with relational data from a pair of tables:
Mutating joins, which add new variables to one data frame from matching observations in another.
Filtering joins, which filter observations from one data frame based on whether or not they match an observation in the other table.
Set operations, which treat observations as if they were set elements.
The first tool we’ll look at for combining a pair of tables is the mutating join. A mutating join allows you to combine variables from two tables. It first matches observations by their keys, then copies across variables from one table to the other.
Let’s work on a part of flights
data as an example.
flights2 <- flights %>%
select(year:day, hour, origin, dest, tailnum, carrier)
flights2
## # A tibble: 336,776 × 8
## year month day hour origin dest tailnum carrier
## <int> <int> <int> <dbl> <chr> <chr> <chr> <chr>
## 1 2013 1 1 5 EWR IAH N14228 UA
## 2 2013 1 1 5 LGA IAH N24211 UA
## 3 2013 1 1 5 JFK MIA N619AA AA
## 4 2013 1 1 5 JFK BQN N804JB B6
## 5 2013 1 1 6 LGA ATL N668DN DL
## 6 2013 1 1 5 EWR ORD N39463 UA
## 7 2013 1 1 6 EWR FLL N516JB B6
## 8 2013 1 1 6 LGA IAD N829AS EV
## 9 2013 1 1 6 JFK MCO N593JB B6
## 10 2013 1 1 6 LGA ORD N3ALAA AA
## # … with 336,766 more rows
Imagine you want to add the full airline name to the flights2 data.
You can combine the airlines and flights2 data frames with
left_join()
:
flights2 %>%
select(-origin, -dest) %>%
left_join(airlines, by = "carrier")
## # A tibble: 336,776 × 7
## year month day hour tailnum carrier name
## <int> <int> <int> <dbl> <chr> <chr> <chr>
## 1 2013 1 1 5 N14228 UA United Air Lines Inc.
## 2 2013 1 1 5 N24211 UA United Air Lines Inc.
## 3 2013 1 1 5 N619AA AA American Airlines Inc.
## 4 2013 1 1 5 N804JB B6 JetBlue Airways
## 5 2013 1 1 6 N668DN DL Delta Air Lines Inc.
## 6 2013 1 1 5 N39463 UA United Air Lines Inc.
## 7 2013 1 1 6 N516JB B6 JetBlue Airways
## 8 2013 1 1 6 N829AS EV ExpressJet Airlines Inc.
## 9 2013 1 1 6 N593JB B6 JetBlue Airways
## 10 2013 1 1 6 N3ALAA AA American Airlines Inc.
## # … with 336,766 more rows
Here carrier
is a foreign key in flights2
to airlines
. What happened is that we keep all observations
in flights2
(since it is left_join
) , then add
other columns of airlines
(only one column
name
in this example) by matching the carrier
column values.
This is hard to generalise when we need to match multiple variables. We will use the following visual presentations to help us understand the four mutating join functions: the inner join, and the three outer joins.
To help us learn how joins work, let’s look at the following visual representation:
x <- tribble(
~key, ~val_x,
1, "x1",
2, "x2",
3, "x3"
)
y <- tribble(
~key, ~val_y,
1, "y1",
2, "y2",
4, "y3"
)
The coloured column represents the “key” variable: these are used to match the rows between the tables. The grey column represents the “value” column that is carried along for the ride. In these examples we use a single key variable, but the idea generalises in a straightforward way to multiple keys and multiple values.
The simplest type of join is the inner join. An inner join matches pairs of observations whenever their keys are equal:
x %>%
inner_join(y, by = "key")
## # A tibble: 2 × 3
## key val_x val_y
## <dbl> <chr> <chr>
## 1 1 x1 y1
## 2 2 x2 y2
For inner join, unmatched rows are not included in the result. This means that generally inner joins are usually not appropriate for use in analysis because it’s too easy to lose observations.
An inner join keeps observations that appear in both tables. An outer join keeps observations that appear in at least one of the tables. There are three types of outer joins:
x
.y
.x
and
y
.In outer joins, the values of new columns are filled with
NA
if there is no key matching. Another way to depict the
different types of joins is with a Venn diagram:
The most commonly used join is the left join: you use this whenever you look up additional data from another table, because it preserves the original observations even when there isn’t a match. The left join should be your default join: use it unless you have a strong reason to prefer one of the others.
The Venn diagram cannot well illustrate what will happen when there are duplicated keys. There are two possibilities:
x <- tribble(
~key, ~val_x,
1, "x1",
2, "x2",
2, "x3",
1, "x4"
)
y <- tribble(
~key, ~val_y,
1, "y1",
2, "y2"
)
left_join(x, y, by = "key")
## # A tibble: 4 × 3
## key val_x val_y
## <dbl> <chr> <chr>
## 1 1 x1 y1
## 2 2 x2 y2
## 3 2 x3 y2
## 4 1 x4 y1
x <- tribble(
~key, ~val_x,
1, "x1",
2, "x2",
2, "x3",
3, "x4"
)
y <- tribble(
~key, ~val_y,
1, "y1",
2, "y2",
2, "y3",
3, "y4"
)
left_join(x, y, by = "key")
## # A tibble: 6 × 3
## key val_x val_y
## <dbl> <chr> <chr>
## 1 1 x1 y1
## 2 2 x2 y2
## 3 2 x2 y3
## 4 2 x3 y2
## 5 2 x3 y3
## 6 3 x4 y4
So far, the pairs of tables have always been joined by a single
variable, and that variable has the same name in both tables. That
constraint was encoded by by
= “key”. You can use other
values for by
to connect the tables in other ways:
by = NULL
, uses all variables that appear
in both tables, the so called natural join. For
example, the flights
and weather
tables match
on their common variables: year
, month
,
day
, hour
and origin
.flights2 %>%
left_join(weather)
## # A tibble: 336,776 × 18
## year month day hour origin dest tailnum carrier temp dewp humid
## <int> <int> <int> <dbl> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl>
## 1 2013 1 1 5 EWR IAH N14228 UA 39.0 28.0 64.4
## 2 2013 1 1 5 LGA IAH N24211 UA 39.9 25.0 54.8
## 3 2013 1 1 5 JFK MIA N619AA AA 39.0 27.0 61.6
## 4 2013 1 1 5 JFK BQN N804JB B6 39.0 27.0 61.6
## 5 2013 1 1 6 LGA ATL N668DN DL 39.9 25.0 54.8
## 6 2013 1 1 5 EWR ORD N39463 UA 39.0 28.0 64.4
## 7 2013 1 1 6 EWR FLL N516JB B6 37.9 28.0 67.2
## 8 2013 1 1 6 LGA IAD N829AS EV 39.9 25.0 54.8
## 9 2013 1 1 6 JFK MCO N593JB B6 37.9 27.0 64.3
## 10 2013 1 1 6 LGA ORD N3ALAA AA 39.9 25.0 54.8
## # … with 336,766 more rows, and 7 more variables: wind_dir <dbl>,
## # wind_speed <dbl>, wind_gust <dbl>, precip <dbl>, pressure <dbl>,
## # visib <dbl>, time_hour <dttm>
by
= “x”. This is like a natural
join, but uses only some of the common variables. For example,
flights
and planes
have year
variables, but they mean different things so we only want to join by
tailnum
.flights2 %>%
left_join(planes, by = "tailnum")
## # A tibble: 336,776 × 16
## year.x month day hour origin dest tailnum carrier year.y type manuf…¹
## <int> <int> <int> <dbl> <chr> <chr> <chr> <chr> <int> <chr> <chr>
## 1 2013 1 1 5 EWR IAH N14228 UA 1999 Fixed w… BOEING
## 2 2013 1 1 5 LGA IAH N24211 UA 1998 Fixed w… BOEING
## 3 2013 1 1 5 JFK MIA N619AA AA 1990 Fixed w… BOEING
## 4 2013 1 1 5 JFK BQN N804JB B6 2012 Fixed w… AIRBUS
## 5 2013 1 1 6 LGA ATL N668DN DL 1991 Fixed w… BOEING
## 6 2013 1 1 5 EWR ORD N39463 UA 2012 Fixed w… BOEING
## 7 2013 1 1 6 EWR FLL N516JB B6 2000 Fixed w… AIRBUS…
## 8 2013 1 1 6 LGA IAD N829AS EV 1998 Fixed w… CANADA…
## 9 2013 1 1 6 JFK MCO N593JB B6 2004 Fixed w… AIRBUS
## 10 2013 1 1 6 LGA ORD N3ALAA AA NA <NA> <NA>
## # … with 336,766 more rows, 5 more variables: model <chr>, engines <int>,
## # seats <int>, speed <int>, engine <chr>, and abbreviated variable name
## # ¹manufacturer
Note that the year
variables (which appear in both input
data frames, but are not constrained to be equal) are disambiguated in
the output with a suffix. We can fix this by use
rename()
.
flights2 %>%
left_join(planes, by = "tailnum") %>%
rename("flights_year" = 'year.x', "plane_made_year" = 'year.y') %>%
glimpse()
## Rows: 336,776
## Columns: 16
## $ flights_year <int> 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, …
## $ month <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ day <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ hour <dbl> 5, 5, 5, 5, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, …
## $ origin <chr> "EWR", "LGA", "JFK", "JFK", "LGA", "EWR", "EWR", "LGA"…
## $ dest <chr> "IAH", "IAH", "MIA", "BQN", "ATL", "ORD", "FLL", "IAD"…
## $ tailnum <chr> "N14228", "N24211", "N619AA", "N804JB", "N668DN", "N39…
## $ carrier <chr> "UA", "UA", "AA", "B6", "DL", "UA", "B6", "EV", "B6", …
## $ plane_made_year <int> 1999, 1998, 1990, 2012, 1991, 2012, 2000, 1998, 2004, …
## $ type <chr> "Fixed wing multi engine", "Fixed wing multi engine", …
## $ manufacturer <chr> "BOEING", "BOEING", "BOEING", "AIRBUS", "BOEING", "BOE…
## $ model <chr> "737-824", "737-824", "757-223", "A320-232", "757-232"…
## $ engines <int> 2, 2, 2, 2, 2, 2, 2, 2, 2, NA, 2, 2, 2, 2, NA, 2, 2, 2…
## $ seats <int> 149, 149, 178, 200, 178, 191, 200, 55, 200, NA, 200, 2…
## $ speed <int> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
## $ engine <chr> "Turbo-fan", "Turbo-fan", "Turbo-fan", "Turbo-fan", "T…
by
= c(“a” = “b”). This will
match variable a
in table x to variable b
in
table y. The variables from x will be used in the output.For example, if we want to draw a map we need to combine the
flights
data with the airports
data which
contains the location (lat and lon) of each airport. Each flight has an
origin and destination airport, so we need to specify which one we want
to join to:
flights2 %>%
left_join(airports, c("dest" = "faa"))
## # A tibble: 336,776 × 15
## year month day hour origin dest tailnum carrier name lat lon alt
## <int> <int> <int> <dbl> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl>
## 1 2013 1 1 5 EWR IAH N14228 UA Georg… 30.0 -95.3 97
## 2 2013 1 1 5 LGA IAH N24211 UA Georg… 30.0 -95.3 97
## 3 2013 1 1 5 JFK MIA N619AA AA Miami… 25.8 -80.3 8
## 4 2013 1 1 5 JFK BQN N804JB B6 <NA> NA NA NA
## 5 2013 1 1 6 LGA ATL N668DN DL Harts… 33.6 -84.4 1026
## 6 2013 1 1 5 EWR ORD N39463 UA Chica… 42.0 -87.9 668
## 7 2013 1 1 6 EWR FLL N516JB B6 Fort … 26.1 -80.2 9
## 8 2013 1 1 6 LGA IAD N829AS EV Washi… 38.9 -77.5 313
## 9 2013 1 1 6 JFK MCO N593JB B6 Orlan… 28.4 -81.3 96
## 10 2013 1 1 6 LGA ORD N3ALAA AA Chica… 42.0 -87.9 668
## # … with 336,766 more rows, and 3 more variables: tz <dbl>, dst <chr>,
## # tzone <chr>
flights2 %>%
left_join(airports, c("origin" = "faa"))
## # A tibble: 336,776 × 15
## year month day hour origin dest tailnum carrier name lat lon alt
## <int> <int> <int> <dbl> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl>
## 1 2013 1 1 5 EWR IAH N14228 UA Newar… 40.7 -74.2 18
## 2 2013 1 1 5 LGA IAH N24211 UA La Gu… 40.8 -73.9 22
## 3 2013 1 1 5 JFK MIA N619AA AA John … 40.6 -73.8 13
## 4 2013 1 1 5 JFK BQN N804JB B6 John … 40.6 -73.8 13
## 5 2013 1 1 6 LGA ATL N668DN DL La Gu… 40.8 -73.9 22
## 6 2013 1 1 5 EWR ORD N39463 UA Newar… 40.7 -74.2 18
## 7 2013 1 1 6 EWR FLL N516JB B6 Newar… 40.7 -74.2 18
## 8 2013 1 1 6 LGA IAD N829AS EV La Gu… 40.8 -73.9 22
## 9 2013 1 1 6 JFK MCO N593JB B6 John … 40.6 -73.8 13
## 10 2013 1 1 6 LGA ORD N3ALAA AA La Gu… 40.8 -73.9 22
## # … with 336,766 more rows, and 3 more variables: tz <dbl>, dst <chr>,
## # tzone <chr>
Filtering joins match observations in the same way as mutating joins, but affect the observations, not the variables. There are two types:
Semi-joins are useful for matching filtered summary tables back to the original rows. For example, imagine you’ve found the top ten most popular destinations:
top_dest <- flights %>%
count(dest, sort = TRUE) %>%
head(10)
top_dest
## # A tibble: 10 × 2
## dest n
## <chr> <int>
## 1 ORD 17283
## 2 ATL 17215
## 3 LAX 16174
## 4 BOS 15508
## 5 MCO 14082
## 6 CLT 14064
## 7 SFO 13331
## 8 FLL 12055
## 9 MIA 11728
## 10 DCA 9705
Now you want to find each flight that went to one of those destinations. You could construct a filter yourself:
flights %>%
filter(dest %in% top_dest$dest)
## # A tibble: 141,145 × 19
## year month day dep_time sched_de…¹ dep_d…² arr_t…³ sched…⁴ arr_d…⁵ carrier
## <int> <int> <int> <int> <int> <dbl> <int> <int> <dbl> <chr>
## 1 2013 1 1 542 540 2 923 850 33 AA
## 2 2013 1 1 554 600 -6 812 837 -25 DL
## 3 2013 1 1 554 558 -4 740 728 12 UA
## 4 2013 1 1 555 600 -5 913 854 19 B6
## 5 2013 1 1 557 600 -3 838 846 -8 B6
## 6 2013 1 1 558 600 -2 753 745 8 AA
## 7 2013 1 1 558 600 -2 924 917 7 UA
## 8 2013 1 1 558 600 -2 923 937 -14 UA
## 9 2013 1 1 559 559 0 702 706 -4 B6
## 10 2013 1 1 600 600 0 851 858 -7 B6
## # … with 141,135 more rows, 9 more variables: flight <int>, tailnum <chr>,
## # origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
## # minute <dbl>, time_hour <dttm>, and abbreviated variable names
## # ¹sched_dep_time, ²dep_delay, ³arr_time, ⁴sched_arr_time, ⁵arr_delay
But it’s difficult to extend that approach to multiple variables. For
example, imagine that you’d found the 10 days with highest average
delays. How would you construct the filter statement that used
year
, month
, and day
to match it
back to flights?
Instead you can use a semi-join, which connects the two tables like a
mutating join, but instead of adding new columns, only keeps the
rows in x
that have a match in y
:
flights %>%
semi_join(top_dest)
## # A tibble: 141,145 × 19
## year month day dep_time sched_de…¹ dep_d…² arr_t…³ sched…⁴ arr_d…⁵ carrier
## <int> <int> <int> <int> <int> <dbl> <int> <int> <dbl> <chr>
## 1 2013 1 1 542 540 2 923 850 33 AA
## 2 2013 1 1 554 600 -6 812 837 -25 DL
## 3 2013 1 1 554 558 -4 740 728 12 UA
## 4 2013 1 1 555 600 -5 913 854 19 B6
## 5 2013 1 1 557 600 -3 838 846 -8 B6
## 6 2013 1 1 558 600 -2 753 745 8 AA
## 7 2013 1 1 558 600 -2 924 917 7 UA
## 8 2013 1 1 558 600 -2 923 937 -14 UA
## 9 2013 1 1 559 559 0 702 706 -4 B6
## 10 2013 1 1 600 600 0 851 858 -7 B6
## # … with 141,135 more rows, 9 more variables: flight <int>, tailnum <chr>,
## # origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
## # minute <dbl>, time_hour <dttm>, and abbreviated variable names
## # ¹sched_dep_time, ²dep_delay, ³arr_time, ⁴sched_arr_time, ⁵arr_delay
Graphically, a semi-join looks like this:
The inverse of a semi-join is an anti-join. An anti-join keeps the rows that don’t have a match:
Anti-joins are useful for diagnosing join mismatches. For example,
when connecting flights
and planes
, you might
be interested to know that there are many flights
that
don’t have a match in planes
:
flights %>%
anti_join(planes, by = "tailnum") %>%
count(tailnum, sort = TRUE)
## # A tibble: 722 × 2
## tailnum n
## <chr> <int>
## 1 <NA> 2512
## 2 N725MQ 575
## 3 N722MQ 513
## 4 N723MQ 507
## 5 N713MQ 483
## 6 N735MQ 396
## 7 N0EGMQ 371
## 8 N534MQ 364
## 9 N542MQ 363
## 10 N531MQ 349
## # … with 712 more rows
The following code creates a graph of all destination airports in the US map:
airports %>%
semi_join(flights, c("faa" = "dest")) %>%
ggplot(aes(lon, lat)) +
borders("state") +
geom_point() +
coord_quickmap()
Here the x- and y- axis are longitude and latitude respectively. The two points outside the continental map of US refer to the airport in Alaska and Hawaii.
Now let’s compute the average arrival delay of each destination airport and mark it in the map.
flights %>%
filter(!is.na(arr_delay)) %>%
group_by(dest) %>%
summarise(avg_delay = mean(arr_delay)) -> delay_data
airports %>%
semi_join(delay_data, by = c("faa" = "dest")) %>%
left_join(delay_data, by = c("faa" = "dest")) %>%
ggplot(aes(lon, lat)) +
borders("state") +
geom_point(aes(color = avg_delay)) +
scale_color_gradient( low = "green", high = "red") +
coord_quickmap()
As another example, let’s study whether there is a relationship between the age of a plane and its delays?
To perform this analysis, we need to
flights
data to remove all NA
values in dep_delay
and arr_delay
.flights
data with planes
data by
tailnum
.mutate()
tail_num
and compute the average
delay for each plane.flights3 <- flights %>%
filter(!is.na(dep_delay) & !is.na(arr_delay)) %>%
left_join(planes, by = 'tailnum') %>%
rename("flights_year" = 'year.x', "plane_made_year" = 'year.y') %>%
mutate(plane_age = 2013 - plane_made_year) %>%
filter(!is.na(plane_age)) %>%
group_by(tailnum) %>%
summarise(avg_dep_delay = mean(dep_delay), avg_arr_delay = mean(arr_delay), plane_age = mean(plane_age))
cor(flights3$avg_arr_delay, flights3$plane_age)
## [1] -0.01639459
ggplot(flights3, aes(x = plane_age, y = avg_arr_delay)) +
geom_point() +
geom_smooth() +
ylim(0, 50) +
labs(title = "plane age vs departure delay time", x = "plane age (yrs)", y = "average arrival delay (minutes)") +
theme(plot.title = element_text(hjust = 0.5, size = rel(1.2), margin = margin(0,0,15,0)), axis.title.x = element_text(size = rel(1.0), margin = margin(10,0,0,0)), axis.title.y = element_text(size = rel(1.0), margin = margin(0,10,0,0)), axis.text = element_text(size = rel(1.0)), plot.margin = margin(1,1,1,1,"cm"))
As a conclusion, we don’t see significant correlation between the two variables.