This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
You can also embed plots, for example:
Note that the echo = FALSE parameter was added to the
code chunk to prevent printing of the R code that generated the
plot.
Ejemplo Calcular la funcion de autorrelacion parcial para
Xt=0.4Xt-1+0.25Xt-2-0.1Xt-3+Wt
W<-rnorm(1000)
X<-numeric(1000)
X1<-numeric(1000)
X2<-numeric(1000)
X3<-numeric(1000)
X4<-numeric(1000)
for(t in 4:1000)
X [t]<- 0.4*X[t-1]+0.25*X[t-2]-0.1*X[t-3]+W[t]
plot(X,type='l')
pacf(X)
pacf(X, plot = FALSE)
##
## Partial autocorrelations of series 'X', by lag
##
## 1 2 3 4 5 6 7 8 9 10 11
## 0.376 0.260 -0.077 0.013 0.004 -0.038 0.066 -0.027 -0.004 0.012 0.033
## 12 13 14 15 16 17 18 19 20 21 22
## -0.036 0.009 0.004 0.032 0.030 -0.046 -0.038 0.004 -0.043 -0.003 0.026
## 23 24 25 26 27 28 29 30
## 0.000 -0.015 0.021 0.034 -0.030 -0.019 0.007 -0.004
for(t in 2:1000)
X1[t]<-X[t-1]
modelo1<-lm(X~X1)
summary(modelo1)
##
## Call:
## lm(formula = X ~ X1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.0648 -0.7214 -0.0001 0.6966 3.6869
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.01554 0.03269 -0.475 0.635
## X1 0.37604 0.02934 12.815 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.034 on 998 degrees of freedom
## Multiple R-squared: 0.1413, Adjusted R-squared: 0.1404
## F-statistic: 164.2 on 1 and 998 DF, p-value: < 2.2e-16
for(t in 3:1000)
X2[t]<-X[t-2]
modelo2<-lm(X~X1+X2)
summary(modelo2)
##
## Call:
## lm(formula = X ~ X1 + X2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3091 -0.6959 -0.0012 0.6661 3.2086
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.01157 0.03159 -0.366 0.714
## X1 0.27798 0.03060 9.084 <2e-16 ***
## X2 0.26038 0.03061 8.507 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9985 on 997 degrees of freedom
## Multiple R-squared: 0.1994, Adjusted R-squared: 0.1978
## F-statistic: 124.2 on 2 and 997 DF, p-value: < 2.2e-16
for(t in 4:1000)
X3[t]<-X[t-3]
modelo3<-lm(X~X1+X2+X3)
summary(modelo3)
##
## Call:
## lm(formula = X ~ X1 + X2 + X3)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3239 -0.7026 0.0044 0.6592 3.3275
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.01256 0.03151 -0.399 0.6902
## X1 0.29831 0.03163 9.431 <2e-16 ***
## X2 0.28189 0.03177 8.874 <2e-16 ***
## X3 -0.07762 0.03166 -2.451 0.0144 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.996 on 996 degrees of freedom
## Multiple R-squared: 0.2042, Adjusted R-squared: 0.2018
## F-statistic: 85.2 on 3 and 996 DF, p-value: < 2.2e-16
for(t in 5:1000)
X4[t]<-X[t-4]
modelo4<-lm(X~X1+X2+X3+X4)
summary(modelo4)
##
## Call:
## lm(formula = X ~ X1 + X2 + X3 + X4)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3221 -0.7035 -0.0020 0.6503 3.3196
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.01238 0.03153 -0.393 0.6946
## X1 0.29920 0.03173 9.429 <2e-16 ***
## X2 0.27852 0.03303 8.433 <2e-16 ***
## X3 -0.08114 0.03304 -2.456 0.0142 *
## X4 0.01194 0.03181 0.375 0.7075
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9964 on 995 degrees of freedom
## Multiple R-squared: 0.2043, Adjusted R-squared: 0.2011
## F-statistic: 63.88 on 4 and 995 DF, p-value: < 2.2e-16
W<-rnorm(1000)
X<-numeric(1000)
X1<-numeric(1000)
X2<-numeric(1000)
X3<-numeric(1000)
X4<-numeric(1000)
for(t in 4:1000)
X [t]<- 0.5*X[t-1]+W[t]
plot(X,type='l')
pacf(X)
pacf(X, plot = FALSE)
##
## Partial autocorrelations of series 'X', by lag
##
## 1 2 3 4 5 6 7 8 9 10 11
## 0.487 0.014 0.019 -0.016 -0.020 0.004 0.025 -0.046 0.000 -0.007 0.017
## 12 13 14 15 16 17 18 19 20 21 22
## 0.017 0.020 -0.034 0.028 0.034 0.009 -0.049 0.002 -0.002 0.011 -0.002
## 23 24 25 26 27 28 29 30
## 0.037 -0.002 0.002 0.050 -0.022 0.029 0.020 -0.007
for(t in 2:1000)
X1[t]<-X[t-1]
modelo1<-lm(X~X1)
summary(modelo1)
##
## Call:
## lm(formula = X ~ X1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1435 -0.6298 -0.0161 0.6683 3.4216
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.02876 0.03267 0.88 0.379
## X1 0.48720 0.02766 17.62 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.032 on 998 degrees of freedom
## Multiple R-squared: 0.2372, Adjusted R-squared: 0.2364
## F-statistic: 310.3 on 1 and 998 DF, p-value: < 2.2e-16
for(t in 3:1000)
X2[t]<-X[t-2]
modelo2<-lm(X~X1+X2)
summary(modelo2)
##
## Call:
## lm(formula = X ~ X1 + X2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1564 -0.6375 -0.0205 0.6630 3.4334
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.02838 0.03269 0.868 0.385
## X1 0.48013 0.03167 15.162 <2e-16 ***
## X2 0.01454 0.03171 0.459 0.647
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.032 on 997 degrees of freedom
## Multiple R-squared: 0.2373, Adjusted R-squared: 0.2358
## F-statistic: 155.1 on 2 and 997 DF, p-value: < 2.2e-16
for(t in 4:1000)
X3[t]<-X[t-3]
modelo3<-lm(X~X1+X2+X3)
summary(modelo3)
##
## Call:
## lm(formula = X ~ X1 + X2 + X3)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1553 -0.6392 -0.0199 0.6648 3.4231
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.027906 0.032707 0.853 0.394
## X1 0.479848 0.031680 15.147 <2e-16 ***
## X2 0.005017 0.035143 0.143 0.887
## X3 0.019978 0.031765 0.629 0.530
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.033 on 996 degrees of freedom
## Multiple R-squared: 0.2376, Adjusted R-squared: 0.2354
## F-statistic: 103.5 on 3 and 996 DF, p-value: < 2.2e-16
for(t in 5:1000)
X4[t]<-X[t-4]
modelo4<-lm(X~X1+X2+X3+X4)
summary(modelo4)
##
## Call:
## lm(formula = X ~ X1 + X2 + X3 + X4)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1683 -0.6386 -0.0172 0.6666 3.4211
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.028305 0.032728 0.865 0.387
## X1 0.480181 0.031698 15.149 <2e-16 ***
## X2 0.005103 0.035156 0.145 0.885
## X3 0.027961 0.035216 0.794 0.427
## X4 -0.016718 0.031791 -0.526 0.599
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.033 on 995 degrees of freedom
## Multiple R-squared: 0.2379, Adjusted R-squared: 0.2348
## F-statistic: 77.63 on 4 and 995 DF, p-value: < 2.2e-16
W<-rnorm(1000)
X<-numeric(1000)
X1<-numeric(1000)
X2<-numeric(1000)
X3<-numeric(1000)
X4<-numeric(1000)
for(t in 4:1000)
X [t]<- 0.5*X[t-2]+0.25*X[t-1]+W[t]
plot(X,type='l')
pacf(X)
pacf(X, plot = FALSE)
##
## Partial autocorrelations of series 'X', by lag
##
## 1 2 3 4 5 6 7 8 9 10 11
## 0.468 0.460 0.038 0.097 0.024 -0.036 -0.050 0.023 0.003 0.044 -0.022
## 12 13 14 15 16 17 18 19 20 21 22
## 0.001 0.024 0.004 0.025 0.061 0.020 0.032 -0.031 -0.001 -0.025 -0.065
## 23 24 25 26 27 28 29 30
## -0.057 -0.009 -0.019 0.001 -0.016 0.005 -0.008 -0.037
for(t in 2:1000)
X1[t]<-X[t-1]
modelo1<-lm(X~X1)
summary(modelo1)
##
## Call:
## lm(formula = X ~ X1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8118 -0.8023 0.0147 0.7717 4.7791
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.07345 0.03631 -2.023 0.0434 *
## X1 0.46863 0.02798 16.746 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.141 on 998 degrees of freedom
## Multiple R-squared: 0.2194, Adjusted R-squared: 0.2186
## F-statistic: 280.4 on 1 and 998 DF, p-value: < 2.2e-16
for(t in 3:1000)
X2[t]<-X[t-2]
modelo2<-lm(X~X1+X2)
summary(modelo2)
##
## Call:
## lm(formula = X ~ X1 + X2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8715 -0.6785 0.0010 0.6694 3.7166
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.03936 0.03232 -1.218 0.224
## X1 0.25266 0.02815 8.976 <2e-16 ***
## X2 0.46045 0.02815 16.356 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.014 on 997 degrees of freedom
## Multiple R-squared: 0.3845, Adjusted R-squared: 0.3833
## F-statistic: 311.4 on 2 and 997 DF, p-value: < 2.2e-16
for(t in 4:1000)
X3[t]<-X[t-3]
modelo3<-lm(X~X1+X2+X3)
summary(modelo3)
##
## Call:
## lm(formula = X ~ X1 + X2 + X3)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8331 -0.6718 0.0121 0.6609 3.7070
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.03791 0.03234 -1.172 0.241
## X1 0.23517 0.03173 7.411 2.68e-13 ***
## X2 0.45089 0.02926 15.409 < 2e-16 ***
## X3 0.03789 0.03175 1.193 0.233
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.014 on 996 degrees of freedom
## Multiple R-squared: 0.3854, Adjusted R-squared: 0.3835
## F-statistic: 208.2 on 3 and 996 DF, p-value: < 2.2e-16
for(t in 5:1000)
X4[t]<-X[t-4]
modelo4<-lm(X~X1+X2+X3+X4)
summary(modelo4)
##
## Call:
## lm(formula = X ~ X1 + X2 + X3 + X4)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9464 -0.6387 0.0020 0.6463 3.7928
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.03447 0.03223 -1.070 0.28497
## X1 0.23127 0.03163 7.312 5.39e-13 ***
## X2 0.40724 0.03246 12.545 < 2e-16 ***
## X3 0.01542 0.03246 0.475 0.63492
## X4 0.09666 0.03167 3.052 0.00233 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.01 on 995 degrees of freedom
## Multiple R-squared: 0.3911, Adjusted R-squared: 0.3886
## F-statistic: 159.8 on 4 and 995 DF, p-value: < 2.2e-16
W<-rnorm(1000)
X<-numeric(1000)
X1<-numeric(1000)
X2<-numeric(1000)
X3<-numeric(1000)
X4<-numeric(1000)
for(t in 4:1000)
X [t]<- 0.5*X[t-1]+0.25*X[t-2]-0.15*X[t-3]+W[t]
plot(X,type='l')
pacf(X)
pacf(X, plot = FALSE)
##
## Partial autocorrelations of series 'X', by lag
##
## 1 2 3 4 5 6 7 8 9 10 11
## 0.608 0.192 -0.135 -0.001 0.006 -0.032 0.004 -0.020 -0.051 -0.001 -0.017
## 12 13 14 15 16 17 18 19 20 21 22
## 0.022 0.012 -0.029 0.003 0.049 -0.024 0.029 0.001 -0.005 0.018 -0.032
## 23 24 25 26 27 28 29 30
## -0.031 -0.034 -0.053 0.014 0.021 -0.034 -0.017 0.013
for(t in 2:1000)
X1[t]<-X[t-1]
modelo1<-lm(X~X1)
summary(modelo1)
##
## Call:
## lm(formula = X ~ X1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.8884 -0.6969 0.0001 0.7048 3.4191
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.07066 0.03320 -2.129 0.0335 *
## X1 0.60926 0.02514 24.232 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.039 on 998 degrees of freedom
## Multiple R-squared: 0.3704, Adjusted R-squared: 0.3698
## F-statistic: 587.2 on 1 and 998 DF, p-value: < 2.2e-16
for(t in 3:1000)
X2[t]<-X[t-2]
modelo2<-lm(X~X1+X2)
summary(modelo2)
##
## Call:
## lm(formula = X ~ X1 + X2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.8942 -0.6834 -0.0087 0.6645 3.5142
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.05691 0.03268 -1.742 0.0819 .
## X1 0.49240 0.03115 15.807 < 2e-16 ***
## X2 0.19168 0.03115 6.153 1.1e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.021 on 997 degrees of freedom
## Multiple R-squared: 0.3935, Adjusted R-squared: 0.3922
## F-statistic: 323.4 on 2 and 997 DF, p-value: < 2.2e-16
for(t in 4:1000)
X3[t]<-X[t-3]
modelo3<-lm(X~X1+X2+X3)
summary(modelo3)
##
## Call:
## lm(formula = X ~ X1 + X2 + X3)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.7754 -0.6755 0.0095 0.6438 3.3342
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.06469 0.03244 -1.995 0.0464 *
## X1 0.51886 0.03147 16.488 < 2e-16 ***
## X2 0.25899 0.03454 7.499 1.42e-13 ***
## X3 -0.13690 0.03148 -4.349 1.51e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.012 on 996 degrees of freedom
## Multiple R-squared: 0.4048, Adjusted R-squared: 0.403
## F-statistic: 225.8 on 3 and 996 DF, p-value: < 2.2e-16
for(t in 5:1000)
X4[t]<-X[t-4]
modelo4<-lm(X~X1+X2+X3+X4)
summary(modelo4)
##
## Call:
## lm(formula = X ~ X1 + X2 + X3 + X4)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.7759 -0.6762 0.0085 0.6421 3.3336
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.064795 0.032517 -1.993 0.046571 *
## X1 0.518648 0.031781 16.319 < 2e-16 ***
## X2 0.259396 0.035533 7.300 5.87e-13 ***
## X3 -0.136092 0.035539 -3.829 0.000137 ***
## X4 -0.001561 0.031792 -0.049 0.960850
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.012 on 995 degrees of freedom
## Multiple R-squared: 0.4048, Adjusted R-squared: 0.4024
## F-statistic: 169.1 on 4 and 995 DF, p-value: < 2.2e-16
W<-rnorm(1000)
X<-numeric(1000)
X1<-numeric(1000)
X2<-numeric(1000)
X3<-numeric(1000)
X4<-numeric(1000)
Wt<-numeric(1000)
for(t in 4:1000)
X [t]<- 0.2*W[t-1]+0.8*X[t-2]+W[t]
plot(X,type='l')
pacf(X)
pacf(X, plot = FALSE)
##
## Partial autocorrelations of series 'X', by lag
##
## 1 2 3 4 5 6 7 8 9 10 11
## 0.306 0.775 -0.177 0.011 -0.043 0.081 -0.005 0.024 -0.025 -0.001 -0.041
## 12 13 14 15 16 17 18 19 20 21 22
## -0.008 0.011 0.003 -0.030 -0.026 -0.031 -0.012 0.019 -0.001 0.011 0.037
## 23 24 25 26 27 28 29 30
## -0.006 -0.002 -0.005 0.040 0.002 -0.055 -0.051 -0.019
for(t in 2:1000)
X1[t]<-X[t-1]
modelo1<-lm(X~X1)
summary(modelo1)
##
## Call:
## lm(formula = X ~ X1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.2813 -1.1111 0.0326 1.1246 4.6050
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.21076 0.05196 -4.056 5.38e-05 ***
## X1 0.30620 0.03016 10.154 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.618 on 998 degrees of freedom
## Multiple R-squared: 0.09363, Adjusted R-squared: 0.09273
## F-statistic: 103.1 on 1 and 998 DF, p-value: < 2.2e-16
for(t in 3:1000)
X2[t]<-X[t-2]
modelo2<-lm(X~X1+X2)
summary(modelo2)
##
## Call:
## lm(formula = X ~ X1 + X2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.05569 -0.67705 -0.02001 0.68157 2.76304
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.04993 0.03306 -1.511 0.131231
## X1 0.06912 0.01999 3.458 0.000568 ***
## X2 0.77648 0.02000 38.834 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.021 on 997 degrees of freedom
## Multiple R-squared: 0.6393, Adjusted R-squared: 0.6385
## F-statistic: 883.4 on 2 and 997 DF, p-value: < 2.2e-16
for(t in 4:1000)
X3[t]<-X[t-3]
modelo3<-lm(X~X1+X2+X3)
summary(modelo3)
##
## Call:
## lm(formula = X ~ X1 + X2 + X3)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.07384 -0.66224 0.00105 0.68316 2.71182
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.05780 0.03258 -1.774 0.0764 .
## X1 0.20655 0.03122 6.616 6.00e-11 ***
## X2 0.78856 0.01980 39.817 < 2e-16 ***
## X3 -0.17711 0.03123 -5.672 1.85e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.006 on 996 degrees of freedom
## Multiple R-squared: 0.6506, Adjusted R-squared: 0.6495
## F-statistic: 618.1 on 3 and 996 DF, p-value: < 2.2e-16
for(t in 5:1000)
X4[t]<-X[t-4]
modelo4<-lm(X~X1+X2+X3+X4)
summary(modelo4)
##
## Call:
## lm(formula = X ~ X1 + X2 + X3 + X4)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.09298 -0.65745 -0.00759 0.68322 2.71806
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.05722 0.03264 -1.753 0.0799 .
## X1 0.20853 0.03174 6.570 8.11e-11 ***
## X2 0.77980 0.03192 24.432 < 2e-16 ***
## X3 -0.17941 0.03192 -5.620 2.47e-08 ***
## X4 0.01112 0.03177 0.350 0.7263
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.006 on 995 degrees of freedom
## Multiple R-squared: 0.6506, Adjusted R-squared: 0.6492
## F-statistic: 463.2 on 4 and 995 DF, p-value: < 2.2e-16