Load the Nations dataset

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.0     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.1     ✔ tibble    3.1.8
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.1     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the ]8;;http://conflicted.r-lib.org/conflicted package]8;; to force all conflicts to become errors
library(dplyr)
library(ggplot2)
library(plotly)
## 
## Attaching package: 'plotly'
## 
## The following object is masked from 'package:ggplot2':
## 
##     last_plot
## 
## The following object is masked from 'package:stats':
## 
##     filter
## 
## The following object is masked from 'package:graphics':
## 
##     layout
setwd("C:/Users/myngu/OneDrive/Montgomery College/DATA 110/Data Sets")
Nations <- read.csv("nations.csv")

Mutate the data to get the nations GDP

GDP <- mutate(Nations, GDP = gdp_percap * population / 1000000000000)

Graph 1: South East Asia Uprising Four

SE_Asia_Four <- GDP %>%
  filter(country == "Vietnam" | country == "Thailand" | country == "Malaysia" |  country == "Singapore")

Graph1 <- SE_Asia_Four %>%
  ggplot(aes(year, GDP, color = country)) +
  geom_point() +
  geom_line() +
  ggtitle("SE Asia Uprising Four") +
  ylab("GDP ($ Trillion)") + 
  xlab("Year") + 
  theme_minimal(base_size = 12) +
  scale_color_brewer(palette = "Set1")
Graph1 <- ggplotly(Graph1)
Graph1

Graph 2: GDP by Region

GDP_Region_Year <- GDP %>%
  group_by(region, year) %>%
  summarise(GDP = sum(GDP, na.rm = TRUE))
## `summarise()` has grouped output by 'region'. You can override using the
## `.groups` argument.
Graph2 <- GDP_Region_Year %>%
  ggplot(aes(year, GDP, fill = region)) +
  geom_area (color = "white", lwd = 0.25, linetype = 1) +
  theme_minimal(base_size = 12) +
  scale_fill_brewer(palette = "Set2") +
  ggtitle("GDP by Region") +
  ylab("GDP ($ Trillion)") + 
  xlab("Year")
Graph2 <- ggplotly(Graph2)
Graph2