ggplot2The objective of this assignment is to complete and explain basic plots before moving on to more complicated ways to graph data.
Each question is worth 5 points.
To submit this homework you will create the document in Rstudio,
using the knitr package (button included in Rstudio) and then submit the
document to your Rpubs account. Once
uploaded you will submit the link to that document on Canvas. Please
make sure that this link is hyper linked and that I can see the
visualization and the code required to create it
(echo=TRUE).
mosaicData package.marriage_data<-mosaicData::Marriage
ggplot(data=marriage_data,aes(y=delay,color=officialTitle,x=age))+
geom_point(stat='identity')+
scale_fill_brewer(palette='Dark2')+
labs(y='Delay Between Ceremony and Court Date',x='Age of Person',color='Title of Official Conducting Marriage',title='Does the Age of the Person determine Delay?')
The visual cues used here are : 1. Position of the point tells us the
delay between Ceremony Date and Court Date for an Individual 2. Position
of the point tells us the Age for an Individual 3. The color tells us
the type of official used for the wedding
ggplot(data=marriage_data,aes(prevcount))+
geom_bar(aes(fill=prevconc,color=sign),position='dodge')+
facet_wrap(race+officialTitle~.)+
labs(y="No of Previous Marriages",x='Race of Person + Type of Official',fill='Why Previous Marriage Ended',color='Zodiac Sign')
Your objective for the next four questions will be write the code necessary to exactly recreate the provided graphics.
This boxplot was built using the mpg dataset. Notice the
changes in axis labels.
mpg_data<-mpg
mpg_data<-mpg_data%>%mutate(
manufacturer<-factor(manufacturer)
)
ggplot(data=mpg_data,aes(manufacturer,hwy)) +
geom_boxplot() +
coord_flip() +
theme_bw() +
theme(
panel.background = element_blank(),
plot.background = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.border = element_blank())+
labs(x='Vehicle Manufacturer',y= 'Highway Fuel Efficiency (miles/gallon)')
This graphic is built with the diamonds dataset in the
ggplot2 package.
diamonds_data<-ggplot2::diamonds
ggplot(data=diamonds_data,aes(x=price,group=cut,fill=cut))+
geom_density(alpha=0.4) +
scale_fill_brewer(palette = 'Pastel2') +
theme_bw() +
theme(
panel.background = element_blank(),
plot.background = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.border = element_blank(),
)+
labs(x='Diamond Price (USD)',y= 'Density',title='Diamond Price Density',fill='Cut')
This graphic uses the penguins dataset and shows the
counts between males and females by species.
penguins_data <-penguins
ggplot(data=penguins,aes(sex,color=species,fill=species))+
geom_bar(stat='count') +
facet_wrap(species ~., nrow=3) +
coord_flip() +
theme_minimal() +
theme(
panel.background = element_blank(),
plot.background = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.border = element_blank(),
legend.position = "none")
This figure examines the relationship between bill length and depth
in the penguins dataset.
ggplot(data=penguins_data,aes(y=bill_depth_mm,x=bill_length_mm,color=species,shape=species)) +
geom_point() +
geom_smooth(se=FALSE, method='lm')+
scale_color_brewer(palette = 'Dark2')+
theme(
panel.background = element_blank(),
plot.background = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.border = element_blank(),
legend.background=element_blank())+
labs(y='Bill Depth(mm)',x='Bill Length(mm)',color='Species')+
guides(shape=F)