edades=c(23,23,25,27,21)
edades
## [1] 23 23 25 27 21
summary(edades)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 21.0 23.0 23.0 23.8 25.0 27.0
You can also embed plots, for example:
### Género por edad
genero=c("Mujer","Mujer","Hombre","Hombre","Hombre")
genero
## [1] "Mujer" "Mujer" "Hombre" "Hombre" "Hombre"
table(genero,edades)
## edades
## genero 21 23 25 27
## Hombre 1 0 1 1
## Mujer 0 2 0 0
barplot(table(genero,edades))
Acceder a la base de datos Enlace de descarga https://www.ine.gov.py/datos/encuestas/eph/Poblacion/EPH-2021/data/9e824reg02_ephc2021.csv
# Read CSV into DataFrame
base<- read.csv('https://www.ine.gov.py/datos/encuestas/eph/Poblacion/EPH-2021/data/9e824reg02_ephc2021.csv',header=TRUE,sep=';')
Revisar los nombres de las variables
names(base)
## [1] "UPM" "NVIVI" "NHOGA"
## [4] "DPTOREP" "AREA" "L02"
## [7] "P02" "P03" "P04"
## [10] "P04A" "P04B" "P05C"
## [13] "P05P" "P05M" "P06"
## [16] "P08D" "P08M" "P08A"
## [19] "P09" "P10A" "P10AB"
## [22] "P10Z" "P11A" "P11AB"
## [25] "P11Z" "P12" "A01"
## [28] "A01A" "A02" "A03"
## [31] "A04" "A04B" "A04A"
## [34] "A05" "A07" "A08"
## [37] "A10" "A11A" "A11M"
## [40] "A11S" "A12" "A13REC"
## [43] "A14REC" "A15" "A16"
## [46] "A17A" "A17M" "A17S"
## [49] "A18" "A18A" "B01REC"
## [52] "B02REC" "B03LU" "B03MA"
## [55] "B03MI" "B03JU" "B03VI"
## [58] "B03SA" "B03DO" "B04"
## [61] "B05" "B05A" "B06"
## [64] "B07A" "B07M" "B07S"
## [67] "B08" "B09A" "B09M"
## [70] "B09S" "B10" "B11"
## [73] "B12" "B12A" "B12B"
## [76] "B12C" "B13" "B14"
## [79] "B15" "B16G" "B16U"
## [82] "B16D" "B16T" "B17"
## [85] "B18AG" "B18AU" "B18BG"
## [88] "B18BU" "B19" "B20G"
## [91] "B20U" "B20D" "B20T"
## [94] "B21" "B22" "B23"
## [97] "B24" "B25" "B26"
## [100] "B271" "B272" "B28"
## [103] "B29" "B30" "B31"
## [106] "C01REC" "C02REC" "C03"
## [109] "C04" "C05" "C06"
## [112] "C07" "C08" "C09"
## [115] "C101" "C102" "C11G"
## [118] "C11U" "C11D" "C11T"
## [121] "C12" "C13AG" "C13AU"
## [124] "C13BG" "C13BU" "C14"
## [127] "C14A" "C14B" "C14C"
## [130] "C15" "C16REC" "C17REC"
## [133] "C18" "C18A" "C18B"
## [136] "C19" "D01" "D02"
## [139] "D03" "D04" "D05"
## [142] "E01A" "E01B" "E01C"
## [145] "E01D" "E01E" "E01F"
## [148] "E01G" "E01H" "E01I"
## [151] "E01J" "E01K" "E01L"
## [154] "E01M" "E02D1" "E02D2"
## [157] "E02B" "ED01" "ED02"
## [160] "ED03" "ED0504" "ED06C"
## [163] "ED08" "ED09" "ED10"
## [166] "ED11F1" "ED11F1A" "ED11GH1"
## [169] "ED11GH1A" "ED12" "ED13"
## [172] "ED14" "ED14A" "ED15"
## [175] "S01A" "S01B" "S02"
## [178] "S03" "S03A" "S03B"
## [181] "S03C" "S04" "S05"
## [184] "S06" "S07" "S08"
## [187] "S09" "CATE_PEA" "TAMA_PEA"
## [190] "OCUP_PEA" "RAMA_PEA" "HORAB"
## [193] "HORABC" "HORABCO" "PEAD"
## [196] "PEAA" "TIPOHOGA" "FEX"
## [199] "NJEF" "NCON" "NPAD"
## [202] "NMAD" "TIC01" "TIC02"
## [205] "TIC03" "TIC0401" "TIC0402"
## [208] "TIC0403" "TIC0404" "TIC0405"
## [211] "TIC0406" "TIC0407" "TIC0408"
## [214] "TIC0409" "TIC0501" "TIC0502"
## [217] "TIC0503" "TIC0504" "TIC0505"
## [220] "TIC0506" "TIC0507" "TIC0508"
## [223] "TIC0509" "TIC0510" "TIC0511"
## [226] "TIC0512" "TIC0513" "TIC06"
## [229] "TIC07" "añoest" "ra06ya09"
## [232] "e01aimde" "e01bimde" "e01cimde"
## [235] "e01dde" "e01ede" "e01fde"
## [238] "e01gde" "e01hde" "e01ide"
## [241] "e01jde" "e01kde" "e01lde"
## [244] "e01mde" "e01kjde" "e02bde"
## [247] "ingrevasode" "ingrepytyvõde" "ingresect_privadode"
## [250] "ipcm" "pobrezai" "pobnopoi"
## [253] "quintili" "decili" "quintiai"
## [256] "decilai" "informalidad"
Departamentos (DPTOREP) Asunción: 0 San Pedro: 2 Caaguazú: 5 Caazapá:
6
Itapúa: 7
Alto Paraná: 10 Central: 11 Resto: 20
# variable dpartamento
table(base$DPTOREP)
##
## 0 2 5 6 7 10 11 20
## 1105 1645 1325 1232 1681 2157 2830 4594
Ocupados 1 Desocupados 2 Inactivos 3 NR 9
table(base$PEAA)
##
## 1 2 3
## 8182 507 4959
base$PEAA=factor(base$PEAA,labels =c("Ocupados", "Desocupados","Inactivos"))
barplot(table(base$PEAA))
# variable PEAA y PEAD
table(base$PEAA)
##
## Ocupados Desocupados Inactivos
## 8182 507 4959
base2=subset(base,base$P02>14 & base$DPTOREP==0 )
table(base2$P02)
##
## 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
## 20 11 12 12 17 16 21 13 19 16 22 24 23 14 16 11 22 15 13 16 19 16 18 22 14 11
## 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
## 12 20 10 13 7 8 16 12 13 10 12 7 8 5 8 12 9 11 12 10 13 15 12 12 11 10
## 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 88 89 90 97
## 7 14 8 5 7 6 8 6 5 5 3 4 7 6 2 4 5 3 2 1 1 3 1 1
base2$PEAA=factor(base2$PEAA,labels =c("Ocupados", "Desocupados","Inactivos"))
help(table)
table(base2$PEAA)
##
## Ocupados Desocupados Inactivos
## 549 45 241