Procesos para generar un reporte usando R studio cloud (posit)

edades=c(23,23,25,27,21)
edades
## [1] 23 23 25 27 21
summary(edades)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    21.0    23.0    23.0    23.8    25.0    27.0

Including Plots

You can also embed plots, for example:

### Género por edad

genero=c("Mujer","Mujer","Hombre","Hombre","Hombre")
genero
## [1] "Mujer"  "Mujer"  "Hombre" "Hombre" "Hombre"
table(genero,edades)
##         edades
## genero   21 23 25 27
##   Hombre  1  0  1  1
##   Mujer   0  2  0  0
barplot(table(genero,edades))

Práctica clase 2> Verificar la cantidad de personas ocupadas y desocupadas del año 2021 en Asunción

Encuesta permanente de hogares

Acceder a la base de datos Enlace de descarga https://www.ine.gov.py/datos/encuestas/eph/Poblacion/EPH-2021/data/9e824reg02_ephc2021.csv

# Read CSV into DataFrame
base<- read.csv('https://www.ine.gov.py/datos/encuestas/eph/Poblacion/EPH-2021/data/9e824reg02_ephc2021.csv',header=TRUE,sep=';')

Revisar los nombres de las variables

names(base)
##   [1] "UPM"                 "NVIVI"               "NHOGA"              
##   [4] "DPTOREP"             "AREA"                "L02"                
##   [7] "P02"                 "P03"                 "P04"                
##  [10] "P04A"                "P04B"                "P05C"               
##  [13] "P05P"                "P05M"                "P06"                
##  [16] "P08D"                "P08M"                "P08A"               
##  [19] "P09"                 "P10A"                "P10AB"              
##  [22] "P10Z"                "P11A"                "P11AB"              
##  [25] "P11Z"                "P12"                 "A01"                
##  [28] "A01A"                "A02"                 "A03"                
##  [31] "A04"                 "A04B"                "A04A"               
##  [34] "A05"                 "A07"                 "A08"                
##  [37] "A10"                 "A11A"                "A11M"               
##  [40] "A11S"                "A12"                 "A13REC"             
##  [43] "A14REC"              "A15"                 "A16"                
##  [46] "A17A"                "A17M"                "A17S"               
##  [49] "A18"                 "A18A"                "B01REC"             
##  [52] "B02REC"              "B03LU"               "B03MA"              
##  [55] "B03MI"               "B03JU"               "B03VI"              
##  [58] "B03SA"               "B03DO"               "B04"                
##  [61] "B05"                 "B05A"                "B06"                
##  [64] "B07A"                "B07M"                "B07S"               
##  [67] "B08"                 "B09A"                "B09M"               
##  [70] "B09S"                "B10"                 "B11"                
##  [73] "B12"                 "B12A"                "B12B"               
##  [76] "B12C"                "B13"                 "B14"                
##  [79] "B15"                 "B16G"                "B16U"               
##  [82] "B16D"                "B16T"                "B17"                
##  [85] "B18AG"               "B18AU"               "B18BG"              
##  [88] "B18BU"               "B19"                 "B20G"               
##  [91] "B20U"                "B20D"                "B20T"               
##  [94] "B21"                 "B22"                 "B23"                
##  [97] "B24"                 "B25"                 "B26"                
## [100] "B271"                "B272"                "B28"                
## [103] "B29"                 "B30"                 "B31"                
## [106] "C01REC"              "C02REC"              "C03"                
## [109] "C04"                 "C05"                 "C06"                
## [112] "C07"                 "C08"                 "C09"                
## [115] "C101"                "C102"                "C11G"               
## [118] "C11U"                "C11D"                "C11T"               
## [121] "C12"                 "C13AG"               "C13AU"              
## [124] "C13BG"               "C13BU"               "C14"                
## [127] "C14A"                "C14B"                "C14C"               
## [130] "C15"                 "C16REC"              "C17REC"             
## [133] "C18"                 "C18A"                "C18B"               
## [136] "C19"                 "D01"                 "D02"                
## [139] "D03"                 "D04"                 "D05"                
## [142] "E01A"                "E01B"                "E01C"               
## [145] "E01D"                "E01E"                "E01F"               
## [148] "E01G"                "E01H"                "E01I"               
## [151] "E01J"                "E01K"                "E01L"               
## [154] "E01M"                "E02D1"               "E02D2"              
## [157] "E02B"                "ED01"                "ED02"               
## [160] "ED03"                "ED0504"              "ED06C"              
## [163] "ED08"                "ED09"                "ED10"               
## [166] "ED11F1"              "ED11F1A"             "ED11GH1"            
## [169] "ED11GH1A"            "ED12"                "ED13"               
## [172] "ED14"                "ED14A"               "ED15"               
## [175] "S01A"                "S01B"                "S02"                
## [178] "S03"                 "S03A"                "S03B"               
## [181] "S03C"                "S04"                 "S05"                
## [184] "S06"                 "S07"                 "S08"                
## [187] "S09"                 "CATE_PEA"            "TAMA_PEA"           
## [190] "OCUP_PEA"            "RAMA_PEA"            "HORAB"              
## [193] "HORABC"              "HORABCO"             "PEAD"               
## [196] "PEAA"                "TIPOHOGA"            "FEX"                
## [199] "NJEF"                "NCON"                "NPAD"               
## [202] "NMAD"                "TIC01"               "TIC02"              
## [205] "TIC03"               "TIC0401"             "TIC0402"            
## [208] "TIC0403"             "TIC0404"             "TIC0405"            
## [211] "TIC0406"             "TIC0407"             "TIC0408"            
## [214] "TIC0409"             "TIC0501"             "TIC0502"            
## [217] "TIC0503"             "TIC0504"             "TIC0505"            
## [220] "TIC0506"             "TIC0507"             "TIC0508"            
## [223] "TIC0509"             "TIC0510"             "TIC0511"            
## [226] "TIC0512"             "TIC0513"             "TIC06"              
## [229] "TIC07"               "añoest"              "ra06ya09"           
## [232] "e01aimde"            "e01bimde"            "e01cimde"           
## [235] "e01dde"              "e01ede"              "e01fde"             
## [238] "e01gde"              "e01hde"              "e01ide"             
## [241] "e01jde"              "e01kde"              "e01lde"             
## [244] "e01mde"              "e01kjde"             "e02bde"             
## [247] "ingrevasode"         "ingrepytyvõde"       "ingresect_privadode"
## [250] "ipcm"                "pobrezai"            "pobnopoi"           
## [253] "quintili"            "decili"              "quintiai"           
## [256] "decilai"             "informalidad"

Filtrar de la base solo a las personas de 15 y mas años de edad

Departamentos (DPTOREP) Asunción: 0 San Pedro: 2 Caaguazú: 5 Caazapá: 6
Itapúa: 7
Alto Paraná: 10 Central: 11 Resto: 20

# variable dpartamento

table(base$DPTOREP)
## 
##    0    2    5    6    7   10   11   20 
## 1105 1645 1325 1232 1681 2157 2830 4594

Variable departamento

Ocupados 1 Desocupados 2 Inactivos 3 NR 9

table(base$PEAA)
## 
##    1    2    3 
## 8182  507 4959
base$PEAA=factor(base$PEAA,labels =c("Ocupados", "Desocupados","Inactivos"))
barplot(table(base$PEAA))

# variable PEAA y PEAD

table(base$PEAA)
## 
##    Ocupados Desocupados   Inactivos 
##        8182         507        4959
base2=subset(base,base$P02>14 & base$DPTOREP==0 )
table(base2$P02)
## 
## 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 
## 20 11 12 12 17 16 21 13 19 16 22 24 23 14 16 11 22 15 13 16 19 16 18 22 14 11 
## 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 
## 12 20 10 13  7  8 16 12 13 10 12  7  8  5  8 12  9 11 12 10 13 15 12 12 11 10 
## 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 88 89 90 97 
##  7 14  8  5  7  6  8  6  5  5  3  4  7  6  2  4  5  3  2  1  1  3  1  1
base2$PEAA=factor(base2$PEAA,labels =c("Ocupados", "Desocupados","Inactivos"))
help(table)
table(base2$PEAA)
## 
##    Ocupados Desocupados   Inactivos 
##         549          45         241