Email : ferdinand.widjaya@student.matanauniversity.ac.id
RPubs : https://rpubs.com/ferdnw/
Address : ARA
Center, Matana University Tower
Jl. CBD
Barat Kav, RT.1, Curug Sangereng, Kelapa Dua,
Please work out in R by doing a chi-squared test on the treatment (X) and improvement (Y) columns in treatment.csv.
Ho: The variables are independent. HA: The variables are not independent (meaning they are related).
treat = read.csv('treatment.csv')tbl = table(treat$treatment, treat$improvement);tbl # the contingency table ##
## improved not-improved
## not-treated 26 29
## treated 35 15
chisq.test(tbl,simulate.p.value = TRUE) # perform the Chi-Squared test##
## Pearson's Chi-squared test with simulated p-value (based on 2000
## replicates)
##
## data: tbl
## X-squared = 5.5569, df = NA, p-value = 0.02099
As p-value 0.03 < taraf signifikansi 0.05 maka H0 di tolak, yang berarti bahwa Pasien yang mengalami Improvement dipengaruhi oleh Treatment atau tidak
Find out if the cyl and carb variables in mtcars dataset are dependent or not.
Ho: The variables are independent. HA: The variables are not independent (meaning they are related).
chisq.test(mtcars$cyl, mtcars$carb)##
## Pearson's Chi-squared test
##
## data: mtcars$cyl and mtcars$carb
## X-squared = 24.389, df = 10, p-value = 0.006632
We have a high chi-squared value and a p-value of less than 0.05 significance level. So we reject the null hypothesis and conclude that carb and cyl have a significant (dependent) relationship.
256 visual artists were surveyed to find out their zodiac sign. The results were: Aries (29), Taurus (24), Gemini (22), Cancer (19), Leo (21), Virgo (18), Libra (19), Scorpio (20), Sagittarius (23), Capricorn (18), Aquarius (20), Pisces (23). Test the hypothesis that zodiac signs are evenly distributed across visual artists
Ho: The variables are not evenly distributed HA: The zodiacs are evenly distributed
zodiac = c("Aries","Taurus",'Gemini', 'Cancer', 'Leo', 'Virgo', 'Libra', 'Scorpio', 'Sagitarius', 'Capricorn', 'Aquarius', 'Pisces')
Total = c(29,24,22,19,21,18,19,20,23,18,20,23)
zchi = data.frame(zodiac, Total)
n = 256
zchi$Expected = 1/12 * n
zchi## zodiac Total Expected
## 1 Aries 29 21.33333
## 2 Taurus 24 21.33333
## 3 Gemini 22 21.33333
## 4 Cancer 19 21.33333
## 5 Leo 21 21.33333
## 6 Virgo 18 21.33333
## 7 Libra 19 21.33333
## 8 Scorpio 20 21.33333
## 9 Sagitarius 23 21.33333
## 10 Capricorn 18 21.33333
## 11 Aquarius 20 21.33333
## 12 Pisces 23 21.33333
df <- 12 - 1
(chisq <- sum((zchi$Total - zchi$Expected)^2 / zchi$Expected))## [1] 5.09375
(p_value <- pchisq(q = chisq, df = df, lower.tail = F))## [1] 0.9265414
(chisq.test.result <- chisq.test(x = zchi$Total, p = zchi$Expected / n)) ##
## Chi-squared test for given probabilities
##
## data: zchi$Total
## X-squared = 5.0938, df = 11, p-value = 0.9265
We have a p-value of more than 0.05 significance level. So we accept the null hypothesis and conclude that The Zodiacs are evenly distributed across 12 of them