library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.0     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.1     ✔ tibble    3.1.8
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.1     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the ]8;;http://conflicted.r-lib.org/conflicted package]8;; to force all conflicts to become errors
library(ggfortify)
library(htmltools)
library(plotly)
## 
## Attaching package: 'plotly'
## 
## The following object is masked from 'package:ggplot2':
## 
##     last_plot
## 
## The following object is masked from 'package:stats':
## 
##     filter
## 
## The following object is masked from 'package:graphics':
## 
##     layout
library(ggplot2)
setwd("C:/Users/amani/OneDrive/Desktop/Data110")
nations <- read_csv("nations.csv")
## Rows: 5275 Columns: 10
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (5): iso2c, iso3c, country, region, income
## dbl (5): year, gdp_percap, population, birth_rate, neonat_mortal_rate
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
nations <- read_csv("nations.csv") %>% 
  mutate(gdp_tn = gdp_percap*population/10^12 )
## Rows: 5275 Columns: 10
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (5): iso2c, iso3c, country, region, income
## dbl (5): year, gdp_percap, population, birth_rate, neonat_mortal_rate
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
random <- nations %>% 
  filter(iso3c == "NZL" | iso3c == "GRC" | iso3c == "LKA" | iso3c == "QAT" ) %>% 
  arrange(gdp_tn)
filtered_nations <- nations %>%
  filter(country %in% c("NZL", "GRC", "LKA", "QAT"))
ggplot(random, aes(x = year, y = gdp_tn, color = country)) +
  xlab("year") +
  ylab("GDP (trillions)") +
  ggtitle("GDP in Trillions by Year") +
  theme_light()+
  theme(plot.title = element_text(hjust=0.5))

ggplot(random, aes(x = year, y = gdp_tn, color = country)) +
  geom_point() +
  geom_line() +
  xlab("Year") +
  ylab("GDP (trillions)")+
  ggtitle("GDP in Trillions by Year") +
  scale_color_brewer(palette = "Set1") +
  theme_dark()+
  theme(plot.title = element_text(hjust  = 0.8))
## Warning: Removed 10 rows containing missing values (`geom_point()`).
## Warning: Removed 10 rows containing missing values (`geom_line()`).

summary(random$gdp_tn, na.rm = TRUE)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
## 0.04046 0.07636 0.13496 0.14942 0.20484 0.34520      10
library(dplyr)

mutate(gdp_tn = as.numeric(gdp_tn)) + %>% #convert gdp_tn to numeric

random_summary <- random %>%
  group_by(region, year)  %>%
  summarise(gdp_tn= sum(gdp_tn, na.rm = TRUE), .groups = 'drop')
ggtitle("GDP in Trillions by Year") +

ggplot(random_summary, aes(x=year,y = gdp_tn, fill=region)) +
  geom_area() +
  scale_fill_brewer(palette = "set2")
## Warning in pal_name(palette, type): Unknown palette set2
## NULL
random_summary <- random %>%
  group_by(region, year)  %>%
  summarise(gdp_tn= sum(gdp_tn, na.rm = TRUE), .groups = 'drop')

ggplot(random_summary, aes(x=year,y = gdp_tn, fill=region)) +
   xlab("Year") +
  ylab("GDP (trillions)") +
  ggtitle("GDP in Trillions by Year in Regions") +
  geom_area(color = "white",size= 0.5) +

  scale_fill_brewer(palette = "set2")
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## Warning in pal_name(palette, type): Unknown palette set2