# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize expected returns and risk to make it easier to compare the performance of multiple assets and portfolios.
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("AAPL", "TSLA", "AMZN", "EEM", "AGG")
prices <- tq_get(x = symbols,
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol)%>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
asset_returns_tbl
## # A tibble: 300 × 3
## asset date returns
## <chr> <date> <dbl>
## 1 AAPL 2013-01-31 -0.156
## 2 AAPL 2013-02-28 -0.0256
## 3 AAPL 2013-03-28 0.00285
## 4 AAPL 2013-04-30 0.000271
## 5 AAPL 2013-05-31 0.0222
## 6 AAPL 2013-06-28 -0.126
## 7 AAPL 2013-07-31 0.132
## 8 AAPL 2013-08-30 0.0804
## 9 AAPL 2013-09-30 -0.0217
## 10 AAPL 2013-10-31 0.0920
## # … with 290 more rows
#Symbols
symbols <- asset_returns_tbl %>%
distinct(asset) %>%
pull()
symbols
## [1] "AAPL" "AGG" "AMZN" "EEM" "TSLA"
#Weights
weights <- c(1)
weights
## [1] 1
w_tbl <- tibble(symbols, weights)
# tq_portfolio()
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date portfolio.returns
## <date> <dbl>
## 1 2013-01-31 -0.00600
## 2 2013-02-28 -0.122
## 3 2013-03-28 0.0862
## 4 2013-04-30 0.327
## 5 2013-05-31 0.605
## 6 2013-06-28 -0.0717
## 7 2013-07-31 0.453
## 8 2013-08-30 0.207
## 9 2013-09-30 0.300
## 10 2013-10-31 0.104
## # … with 50 more rows
portfolio_sd_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = portfolio.returns,
performance_fun = table.Stats) %>%
select(Stdev) %>%
mutate(tq_sd = round(Stdev, 4))
portfolio_sd_tidyquant_builtin_percent
## # A tibble: 1 × 2
## Stdev tq_sd
## <dbl> <dbl>
## 1 0.211 0.211
#Mean of portfolio returns
portfolio_mean_tidyquant_builtin_percent <- mean(portfolio_returns_tbl$portfolio.returns)
portfolio_mean_tidyquant_builtin_percent
## [1] 0.08211375
#Expected returns vs risk
sd_mean_table <- asset_returns_tbl %>%
group_by(asset) %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Mean = ArithmeticMean, Stdev) %>%
ungroup() %>%
#Add portfolio stdev
add_row(tibble(asset = "Portfolio",
Mean = portfolio_mean_tidyquant_builtin_percent,
Stdev = portfolio_sd_tidyquant_builtin_percent$tq_sd))
sd_mean_table
## # A tibble: 6 × 3
## asset Mean Stdev
## <chr> <dbl> <dbl>
## 1 AAPL 0.015 0.0695
## 2 AGG 0.0017 0.0086
## 3 AMZN 0.0257 0.0739
## 4 EEM 0.0028 0.0419
## 5 TSLA 0.037 0.145
## 6 Portfolio 0.0821 0.211
sd_mean_table %>%
ggplot(aes(x = Stdev, y = Mean, color = asset)) +
geom_point() +
ggrepel::geom_text_repel(aes(label = asset))
### 24 month rolling vol
rolling_sd_tbl <- portfolio_returns_tbl %>%
tq_mutate(select = portfolio.returns,
mutate_fun = rollapply,
width = 24,
FUN = sd,
col_rename = "rolling_sd") %>%
na.omit() %>%
select(date, rolling_sd)
rolling_sd_tbl
## # A tibble: 37 × 2
## date rolling_sd
## <date> <dbl>
## 1 2014-12-31 0.234
## 2 2015-01-30 0.233
## 3 2015-02-27 0.229
## 4 2015-03-31 0.235
## 5 2015-04-30 0.237
## 6 2015-05-29 0.213
## 7 2015-06-30 0.211
## 8 2015-07-31 0.197
## 9 2015-08-31 0.208
## 10 2015-09-30 0.203
## # … with 27 more rows
rolling_sd_tbl %>%
ggplot(aes(x = date, y = rolling_sd)) +
geom_line(color = "cornflowerblue") +
# Formatting
scale_y_continuous(labels = scales::percent_format()) +
#Labeling
labs(x = NULL,
y = NULL,
title = "24 month rolling volatility") +
theme(plot.title = element_text(hjust = 0.5))
How should you expect your portfolio to perform relative to its assets in the portfolio? Would you invest all your money in any of the individual stocks instead of the portfolio? Discuss both in terms of expected return and risk.
It looks like my portfolio has both a higher stdev than all of my holdings which does not make any sense, but based on your code along the portfolio comes in around the middle of all the stocks and is therefore less risky than some individual stocks and the portfolio should be less risky with a higher return than for the risk than a singular stock so i would invest my money in the portfolio and not in any one stock. This is because the risk to return relationship is better when invested in the entire portfolio.