
library(MASS)
library(DT)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following object is masked from 'package:MASS':
##
## select
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
Matched Samples (Paired
t-test)
Soal 18
In the built-in data set named immer, the barley yield in years 1931
and 1932 of the same field are recorded. The yield data are presented in
the data frame columns Y1 and Y2. Assuming that the data in immer
follows the normal distribution, find the 95% confidence interval
estimate of the difference between the mean barley yields between years
1931 and 1932.
Estimate the
difference between the means of matched samples using your textbook
formula.
Y1 = immer$Y1
Y2 = immer$Y2
diff = Y1-Y2
n = length(diff)
d = mean(diff)
sdiff = sqrt((1/(n-1))*sum(diff^2))
alpha = 1-0.95 ; alpha
## [1] 0.05
t = qt(1-(alpha/2), df = n-1)
E = c(-t,t) * (sdiff/sqrt(n)) ; E # nilai Error
## [1] -11.50642 11.50642
interval = round(d+E, digits = 2) ; interval
## [1] 4.41 27.42
Jadi didapatkan hasil selang kepercayaan dari rata-rata antara 4.41
dan 27.42.
\(4.41 ≤ μ ≤ 27.42\)
#Comparison Proportions
Soal 19
In the built-in data set named quine, children from an Australian
town is classified by ethnic background, gender, age, learning status
and the number of days absent from school. In effect, the data frame
column Eth indicates whether the student is Aboriginal or Not (“A” or
“N”), and the column Sex indicates Male or Female (“M” or “F”). Assuming
that the data in quine follows the normal distribution, find the 95%
confidence interval estimate of the difference between the female
proportion of Aboriginal students and the female proportion of
Non-Aboriginal students, each within their own ethnic group.
In R, we can tally the student ethnicity against the gender with the
table function. As the result shows, within the Aboriginal student
population, 38 students are female. Whereas within the Non-Aboriginal
student population, 42 are female.
Estimate the
difference between two population proportions using your textbook
formula.
table(quine$Eth, quine$Sex)
##
## F M
## A 38 31
## N 42 35
data = quine%>%
count(Eth, Sex)
data = data.frame(
"-" = c("A" , "N" , "TOTAL"),
"F" = c(38,42, 38+42),
"M" = c(31,35, 31+35),
"TOTAL" = c(38+31, 42+35, 38+31+42+35)
)
data
## X. F M TOTAL
## 1 A 38 31 69
## 2 N 42 35 77
## 3 TOTAL 80 66 146
esti1 = 38/69
n1 = 69
esti2 = 42/77
n2 = 77
alpha = .05
estimate = esti1-esti2
x = qnorm(0.975) * sqrt(((esti1*(1-esti1))/n1))+sqrt(((esti2*(1-esti2))/n2))
CI = round(estimate + c(-x,x), digits = 3) ; CI
## [1] -0.169 0.179
Selang kepercayaannya adalah [-0.169, 0.179] atau [-16.9%, 17.9%]
prop.test(table(quine$Eth, quine$Sex), correct = FALSE)
##
## 2-sample test for equality of proportions without continuity correction
##
## data: table(quine$Eth, quine$Sex)
## X-squared = 0.0040803, df = 1, p-value = 0.9491
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## -0.1564218 0.1669620
## sample estimates:
## prop 1 prop 2
## 0.5507246 0.5454545
LS0tDQp0aXRsZTogIkxhYjU6IEEvQiBUZXN0aW5nIg0KYXV0aG9yOiAiQ2FsdmluIFJpc3dhbmRpIg0KZGF0ZTogImByIGZvcm1hdChTeXMuRGF0ZSgpLCAnJUIgJWQsICVZJylgIg0Kb3V0cHV0Og0KICBodG1sX2RvY3VtZW50Og0KICAgIGhpZ2hsaWdodDogcHlnbWVudHMNCiAgICB0aGVtZTogc3BhY2VsYWINCiAgICBudW1iZXJfc2VjdGlvbnM6IHllcw0KICAgIHRvYzogeWVzDQogICAgdG9jX2Zsb2F0OiB5ZXMNCiAgICBjb2RlX2Rvd25sb2FkOiB5ZXMNCiAgICBjb2RlX2ZvbGRpbmc6IGhpZGUNCi0tLQ0KDQpgYGB7ciBMb2dvLCBlY2hvPUZBTFNFLGZpZy5hbGlnbj0nY2VudGVyJywgb3V0LndpZHRoID0gJzQwJSd9DQprbml0cjo6aW5jbHVkZV9ncmFwaGljcygiaHR0cHM6Ly9naXRodWIuY29tL0Jha3RpLVNpcmVnYXIvaW1hZ2VzL2Jsb2IvbWFzdGVyL2xvZ28ucG5nP3Jhdz10cnVlIikNCmBgYA0KDQpgYGB7cn0NCmxpYnJhcnkoTUFTUykNCmxpYnJhcnkoRFQpDQpsaWJyYXJ5KGRwbHlyKQ0KYGBgDQoNCiMgTWF0Y2hlZCBTYW1wbGVzIChQYWlyZWQgdC10ZXN0KQ0KDQojIyBTb2FsIDE4DQoNCkluIHRoZSBidWlsdC1pbiBkYXRhIHNldCBuYW1lZCBpbW1lciwgdGhlIGJhcmxleSB5aWVsZCBpbiB5ZWFycyAxOTMxIGFuZCAxOTMyIG9mIHRoZSBzYW1lIGZpZWxkIGFyZSByZWNvcmRlZC4gVGhlIHlpZWxkIGRhdGEgYXJlIHByZXNlbnRlZCBpbiB0aGUgZGF0YSBmcmFtZSBjb2x1bW5zIFkxIGFuZCBZMi4gQXNzdW1pbmcgdGhhdCB0aGUgZGF0YSBpbiBpbW1lciBmb2xsb3dzIHRoZSBub3JtYWwgZGlzdHJpYnV0aW9uLCBmaW5kIHRoZSA5NSUgY29uZmlkZW5jZSBpbnRlcnZhbCBlc3RpbWF0ZSBvZiB0aGUgZGlmZmVyZW5jZSBiZXR3ZWVuIHRoZSBtZWFuIGJhcmxleSB5aWVsZHMgYmV0d2VlbiB5ZWFycyAxOTMxIGFuZCAxOTMyLg0KDQojIyMgRGF0YSANCg0KYGBge3J9DQpEVDo6ZGF0YXRhYmxlKGltbWVyKQ0KYGBgDQoNCiMjIyBFc3RpbWF0ZSB0aGUgZGlmZmVyZW5jZSBiZXR3ZWVuIHRoZSBtZWFucyBvZiBtYXRjaGVkIHNhbXBsZXMgdXNpbmcgeW91ciB0ZXh0Ym9vayBmb3JtdWxhLg0KDQpgYGB7cn0NClkxID0gaW1tZXIkWTENClkyID0gaW1tZXIkWTINCmRpZmYgPSBZMS1ZMiANCg0KbiA9IGxlbmd0aChkaWZmKQ0KZCA9IG1lYW4oZGlmZikNCg0Kc2RpZmYgPSBzcXJ0KCgxLyhuLTEpKSpzdW0oZGlmZl4yKSkNCg0KYWxwaGEgPSAxLTAuOTUgOyBhbHBoYQ0KYGBgDQoNCg0KYGBge3J9DQp0ID0gcXQoMS0oYWxwaGEvMiksIGRmID0gbi0xKQ0KRSA9IGMoLXQsdCkgKiAoc2RpZmYvc3FydChuKSkgOyBFICMgbmlsYWkgRXJyb3INCmBgYA0KDQpgYGB7cn0NCmludGVydmFsID0gcm91bmQoZCtFLCBkaWdpdHMgPSAyKSA7IGludGVydmFsDQpgYGANCg0KSmFkaSBkaWRhcGF0a2FuIGhhc2lsIHNlbGFuZyBrZXBlcmNheWFhbiBkYXJpIHJhdGEtcmF0YSBhbnRhcmEgNC40MSBkYW4gMjcuNDIuDQoNCiQ0LjQxIOKJpCDOvCDiiaQgMjcuNDIkDQoNCiNDb21wYXJpc29uIFByb3BvcnRpb25zDQoNCg0KIyMgU29hbCAxOQ0KDQpJbiB0aGUgYnVpbHQtaW4gZGF0YSBzZXQgbmFtZWQgcXVpbmUsIGNoaWxkcmVuIGZyb20gYW4gQXVzdHJhbGlhbiB0b3duIGlzIGNsYXNzaWZpZWQgYnkgZXRobmljIGJhY2tncm91bmQsIGdlbmRlciwgYWdlLCBsZWFybmluZyBzdGF0dXMgYW5kIHRoZSBudW1iZXIgb2YgZGF5cyBhYnNlbnQgZnJvbSBzY2hvb2wuIEluIGVmZmVjdCwgdGhlIGRhdGEgZnJhbWUgY29sdW1uIEV0aCBpbmRpY2F0ZXMgd2hldGhlciB0aGUgc3R1ZGVudCBpcyBBYm9yaWdpbmFsIG9yIE5vdCAo4oCcQeKAnSBvciDigJxO4oCdKSwgYW5kIHRoZSBjb2x1bW4gU2V4IGluZGljYXRlcyBNYWxlIG9yIEZlbWFsZSAo4oCcTeKAnSBvciDigJxG4oCdKS4gQXNzdW1pbmcgdGhhdCB0aGUgZGF0YSBpbiBxdWluZSBmb2xsb3dzIHRoZSBub3JtYWwgZGlzdHJpYnV0aW9uLCBmaW5kIHRoZSA5NSUgY29uZmlkZW5jZSBpbnRlcnZhbCBlc3RpbWF0ZSBvZiB0aGUgZGlmZmVyZW5jZSBiZXR3ZWVuIHRoZSBmZW1hbGUgcHJvcG9ydGlvbiBvZiBBYm9yaWdpbmFsIHN0dWRlbnRzIGFuZCB0aGUgZmVtYWxlIHByb3BvcnRpb24gb2YgTm9uLUFib3JpZ2luYWwgc3R1ZGVudHMsIGVhY2ggd2l0aGluIHRoZWlyIG93biBldGhuaWMgZ3JvdXAuDQoNCkluIFIsIHdlIGNhbiB0YWxseSB0aGUgc3R1ZGVudCBldGhuaWNpdHkgYWdhaW5zdCB0aGUgZ2VuZGVyIHdpdGggdGhlIHRhYmxlIGZ1bmN0aW9uLiBBcyB0aGUgcmVzdWx0IHNob3dzLCB3aXRoaW4gdGhlIEFib3JpZ2luYWwgc3R1ZGVudCBwb3B1bGF0aW9uLCAzOCBzdHVkZW50cyBhcmUgZmVtYWxlLiBXaGVyZWFzIHdpdGhpbiB0aGUgTm9uLUFib3JpZ2luYWwgc3R1ZGVudCBwb3B1bGF0aW9uLCA0MiBhcmUgZmVtYWxlLg0KDQojIyMgREFUQQ0KDQpgYGB7cn0NCkRUOjpkYXRhdGFibGUocXVpbmUpDQpgYGANCg0KIyMjIEVzdGltYXRlIHRoZSBkaWZmZXJlbmNlIGJldHdlZW4gdHdvIHBvcHVsYXRpb24gcHJvcG9ydGlvbnMgdXNpbmcgeW91ciB0ZXh0Ym9vayBmb3JtdWxhLg0KDQpgYGB7cn0NCnRhYmxlKHF1aW5lJEV0aCwgcXVpbmUkU2V4KQ0KYGBgDQoNCmBgYHtyfQ0KZGF0YSA9IHF1aW5lJT4lDQogIGNvdW50KEV0aCwgU2V4KQ0KZGF0YSA9IGRhdGEuZnJhbWUoDQogICItIiA9IGMoIkEiICwgIk4iICwgIlRPVEFMIiksDQogICJGIiA9IGMoMzgsNDIsIDM4KzQyKSwNCiAgIk0iID0gYygzMSwzNSwgMzErMzUpLA0KICAiVE9UQUwiID0gYygzOCszMSwgNDIrMzUsIDM4KzMxKzQyKzM1KQ0KKQ0KZGF0YQ0KYGBgDQoNCmBgYHtyfQ0KZXN0aTEgPSAzOC82OQ0KbjEgPSA2OQ0KZXN0aTIgPSA0Mi83Nw0KbjIgPSA3Nw0KYWxwaGEgPSAuMDUNCmVzdGltYXRlID0gZXN0aTEtZXN0aTINCnggPSBxbm9ybSgwLjk3NSkgKiBzcXJ0KCgoZXN0aTEqKDEtZXN0aTEpKS9uMSkpK3NxcnQoKChlc3RpMiooMS1lc3RpMikpL24yKSkNCg0KQ0kgPSByb3VuZChlc3RpbWF0ZSArIGMoLXgseCksIGRpZ2l0cyA9IDMpIDsgQ0kNCmBgYA0KDQoNClNlbGFuZyBrZXBlcmNheWFhbm55YSBhZGFsYWggWy0wLjE2OSwgMC4xNzldIGF0YXUgWy0xNi45JSwgMTcuOSVdDQoNCmBgYHtyfQ0KcHJvcC50ZXN0KHRhYmxlKHF1aW5lJEV0aCwgcXVpbmUkU2V4KSwgY29ycmVjdCA9IEZBTFNFKQ0KYGBgDQoNCg==