Loading data and packages
library(tidyverse)
library(openintro)
Data
data("fastfood", package='openintro')
head(fastfood)
## # A tibble: 6 × 17
## restaurant item calories cal_fat total_fat sat_fat trans_fat cholesterol
## <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Mcdonalds Artisan G… 380 60 7 2 0 95
## 2 Mcdonalds Single Ba… 840 410 45 17 1.5 130
## 3 Mcdonalds Double Ba… 1130 600 67 27 3 220
## 4 Mcdonalds Grilled B… 750 280 31 10 0.5 155
## 5 Mcdonalds Crispy Ba… 920 410 45 12 0.5 120
## 6 Mcdonalds Big Mac 540 250 28 10 1 80
## # ℹ 9 more variables: sodium <dbl>, total_carb <dbl>, fiber <dbl>, sugar <dbl>,
## # protein <dbl>, vit_a <dbl>, vit_c <dbl>, calcium <dbl>, salad <chr>
Let’s first focus on just products from McDonalds and Dairy
Queen.
mcdonalds <- fastfood %>%
filter(restaurant == "Mcdonalds")
dairy_queen <- fastfood %>%
filter(restaurant == "Dairy Queen")
Exercise 1
Make a plot (or plots) to visualize the distributions of the amount
of calories from fat of the options from these two restaurants. How do
their centers, shapes, and spreads compare?
mcdonalds <- fastfood %>%
filter(restaurant == "Mcdonalds")
dairy_queen <- fastfood %>%
filter(restaurant == "Dairy Queen")
summary(mcdonalds$cal_fat)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 50.0 160.0 240.0 285.6 320.0 1270.0

summary(dairy_queen$cal_fat)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0 160.0 220.0 260.5 310.0 670.0
hist(dairy_queen$cal_fat)

The normal distribution
dqmean <- mean(dairy_queen$cal_fat)
dqsd <- sd(dairy_queen$cal_fat)
ggplot(data = dairy_queen, aes(x = cal_fat)) +
geom_blank() +
geom_histogram(aes(y = ..density..)) +
stat_function(fun = dnorm, args = c(mean = dqmean, sd = dqsd), col = "tomato")
## Warning: The dot-dot notation (`..density..`) was deprecated in ggplot2 3.4.0.
## ℹ Please use `after_stat(density)` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Exercise 2
Based on the this plot, does it appear that the data follow a nearly
normal distribution?
I think it does appear to have a normal distribution but some width
spaces and a little peak at the end.
Evaluating the normal distribution
ggplot(data = dairy_queen, aes(sample = cal_fat)) +
geom_line(stat = "qq")

sim_norm <- rnorm(n = nrow(dairy_queen), mean = dqmean, sd = dqsd)
Exercise 3
Make a normal probability plot of sim_norm. Do all of the points fall
on the line? How does this plot compare to the probability plot for the
real data? (Since sim_norm is not a data frame, it can be put directly
into the sample argument and the data argument can be dropped.).
ggplot(data = NULL, aes(sample = sim_norm)) +
geom_line(stat = "qq")

qqnormsim(sample = cal_fat, data = dairy_queen)

Exercise 4
Does the normal probability plot for the calories from fat look
similar to the plots created for the simulated data? That is, do the
plots provide evidence that the calories are nearly normal?.
It does give an initial impression of looking very similar. If we
look at the sims closely we will some variations but besides that it
looks pretty similar.
Exercise 5
Using the same technique, determine whether or not the calories from
McDonald’s menu appear to come from a normal distribution.
Looking at the McDonalds plot we can see that it has a right
skew.
ggplot(data = mcdonalds, aes(sample = calories)) +
geom_line(stat = "qq")
### Normal probabilities
1 - pnorm(q = 600, mean = dqmean, sd = dqsd)
## [1] 0.01501523
dairy_queen %>%
filter(cal_fat > 600) %>%
summarise(percent = n() / nrow(dairy_queen))
## # A tibble: 1 × 1
## percent
## <dbl>
## 1 0.0476
Exercise 6
Write out two probability questions that you would like to answer
about any of the restaurants in this dataset. Calculate those
probabilities using both the theoretical normal distribution as well as
the empirical distribution (four probabilities in all). Which one had a
closer agreement between the two methods?.
Question 1: What is the probability that a random item from any of
the fast food restaurants has less than 500 calories?
Recommended amount fo calories for: Breakfast: 300-400 calories.
Lunch or dinner: 400-500 calories
fastf_mean <- mean(fastfood$calories)
fastf_sd <- sd(fastfood$calories)
pnorm(q = 500, mean = fastf_mean, sd = fastf_sd)
## [1] 0.4564228
fastfood %>%
filter(calories < 500) %>%
summarise(percent = n() / nrow(fastfood))
## # A tibble: 1 × 1
## percent
## <dbl>
## 1 0.513
Question 2: What is the probability that a random item from any og
the restaurants has less than 13 grams of saturated fat?
The American Heart Association recommends aiming for a dietary
pattern that achieves 5% to 6% of calories from saturated fat. For
example, if you need about 2,000 calories a day, no more than 120 of
them should come from saturated fat. That’s about 13 grams of saturated
fat per day.
ffs_mean <- mean(fastfood$sat_fat)
ffs_sd <- sd(fastfood$sat_fat)
pnorm(q = 13, mean = ffs_mean, sd = ffs_sd)
## [1] 0.7748942
fastfood %>%
filter(sat_fat < 13) %>%
summarise(percent = n() / nrow(fastfood))
## # A tibble: 1 × 1
## percent
## <dbl>
## 1 0.837
Exercise 7
Now let’s consider some of the other variables in the dataset. Out of
all the different restaurants, which ones’ distribution is the closest
to normal for sodium?.
Arbys
Arbys <- fastfood %>%
filter(restaurant == "Arbys")
qqnorm(Arbys$sodium, main = "Arbys")
Burger King
Burgerk <- fastfood %>%
filter(restaurant == "Burger King")
qqnorm(Burgerk$sodium, main = "Burger King")

Chick Fil-A
ChickF <- fastfood %>%
filter(restaurant == "Chick Fil-A")
qqnorm(ChickF$sodium, main = "Chick Fil-A")

Dairy Queen
DairyQ <- fastfood %>%
filter(restaurant == "Dairy Queen")
qqnorm(DairyQ$sodium, main = "Dairy Queen")

McDonalds
McD <- fastfood %>%
filter(restaurant == "Mcdonalds")
qqnorm(McD$sodium, main = "McDonald's")

Sonic
Sonic <- fastfood %>%
filter(restaurant == "Sonic")
qqnorm(Sonic$sodium, main = "Sonic")

Subway
Subway <- fastfood %>%
filter(restaurant == "Subway")
qqnorm(Subway$sodium, main = "Subway")

Taco Bell
TacoB <- fastfood %>%
filter(restaurant == "Taco Bell")
qqnorm(TacoB$sodium, main = "Taco Bell")

Burger King appears to a normal distribution for Sodium.
Exercise 8
Note that some of the normal probability plots for sodium
distributions seem to have a stepwise pattern. why do you think this
might be the case? I think it is beacuse of the multiple item in the
menu that contains sodium.
Exercise 9
As you can see, normal probability plots can be used both to assess
normality and visualize skewness. Make a normal probability plot for the
total carbohydrates from a restaurant of your choice. Based on this
normal probability plot, is this variable left skewed, symmetric, or
right skewed? Use a histogram to confirm your findings.
Subway.
I picked Subway because I thought that it would be the “healthy”
option but I can see that the distribution is asymmetric, it has skewed
zones in both sides. I think the menu is the main why the distribution
looks different.

qqnorm(Subway$total_carb, main="Subway")

LS0tDQp0aXRsZTogIkxhYiA0OiBUaGUgbm9ybWFsIGRpc3RyaWJ1dGlvbiINCmF1dGhvcjogIkxhdXJhIEIiDQpkYXRlOiAiYHIgU3lzLkRhdGUoKWAiDQpvdXRwdXQ6IG9wZW5pbnRybzo6bGFiX3JlcG9ydA0KLS0tDQojIyMgTG9hZGluZyBkYXRhIGFuZCBwYWNrYWdlcw0KDQpgYGB7ciBsb2FkLXBhY2thZ2VzLCBtZXNzYWdlPUZBTFNFfQ0KbGlicmFyeSh0aWR5dmVyc2UpDQpsaWJyYXJ5KG9wZW5pbnRybykNCmBgYA0KDQoNCiMjIyMgRGF0YQ0KDQpgYGB7cn0NCmRhdGEoImZhc3Rmb29kIiwgcGFja2FnZT0nb3BlbmludHJvJykNCmhlYWQoZmFzdGZvb2QpDQpgYGANCkxldCdzIGZpcnN0IGZvY3VzIG9uIGp1c3QgcHJvZHVjdHMgZnJvbSBNY0RvbmFsZHMgYW5kIERhaXJ5IFF1ZWVuLg0KDQpgYGB7cn0NCm1jZG9uYWxkcyA8LSBmYXN0Zm9vZCAlPiUNCiAgZmlsdGVyKHJlc3RhdXJhbnQgPT0gIk1jZG9uYWxkcyIpDQpkYWlyeV9xdWVlbiA8LSBmYXN0Zm9vZCAlPiUNCiAgZmlsdGVyKHJlc3RhdXJhbnQgPT0gIkRhaXJ5IFF1ZWVuIikNCmBgYA0KDQoNCiMjIyBFeGVyY2lzZSAxDQoNCk1ha2UgYSBwbG90IChvciBwbG90cykgdG8gdmlzdWFsaXplIHRoZSBkaXN0cmlidXRpb25zIG9mIHRoZSBhbW91bnQgb2YgY2Fsb3JpZXMgZnJvbSBmYXQgb2YgdGhlIG9wdGlvbnMgZnJvbSB0aGVzZSB0d28gcmVzdGF1cmFudHMuIEhvdyBkbyB0aGVpciBjZW50ZXJzLCBzaGFwZXMsIGFuZCBzcHJlYWRzIGNvbXBhcmU/DQoNCmBgYHtyfQ0KbWNkb25hbGRzIDwtIGZhc3Rmb29kICU+JQ0KICBmaWx0ZXIocmVzdGF1cmFudCA9PSAiTWNkb25hbGRzIikNCmRhaXJ5X3F1ZWVuIDwtIGZhc3Rmb29kICU+JQ0KICBmaWx0ZXIocmVzdGF1cmFudCA9PSAiRGFpcnkgUXVlZW4iKQ0KDQpzdW1tYXJ5KG1jZG9uYWxkcyRjYWxfZmF0KQ0KaGlzdChtY2RvbmFsZHMkY2FsX2ZhdCkNCmBgYA0KDQpgYGB7cn0NCnN1bW1hcnkoZGFpcnlfcXVlZW4kY2FsX2ZhdCkNCmhpc3QoZGFpcnlfcXVlZW4kY2FsX2ZhdCkNCmBgYA0KDQojIyMgVGhlIG5vcm1hbCBkaXN0cmlidXRpb24NCg0KYGBge3J9DQpkcW1lYW4gPC0gbWVhbihkYWlyeV9xdWVlbiRjYWxfZmF0KQ0KZHFzZCAgIDwtIHNkKGRhaXJ5X3F1ZWVuJGNhbF9mYXQpDQpgYGANCg0KYGBge3J9DQpnZ3Bsb3QoZGF0YSA9IGRhaXJ5X3F1ZWVuLCBhZXMoeCA9IGNhbF9mYXQpKSArDQogICAgICAgIGdlb21fYmxhbmsoKSArDQogICAgICAgIGdlb21faGlzdG9ncmFtKGFlcyh5ID0gLi5kZW5zaXR5Li4pKSArDQogICAgICAgIHN0YXRfZnVuY3Rpb24oZnVuID0gZG5vcm0sIGFyZ3MgPSBjKG1lYW4gPSBkcW1lYW4sIHNkID0gZHFzZCksIGNvbCA9ICJ0b21hdG8iKQ0KYGBgDQoNCg0KIyMjIEV4ZXJjaXNlIDINCg0KQmFzZWQgb24gdGhlIHRoaXMgcGxvdCwgZG9lcyBpdCBhcHBlYXIgdGhhdCB0aGUgZGF0YSBmb2xsb3cgYSBuZWFybHkgbm9ybWFsIGRpc3RyaWJ1dGlvbj8NCg0KSSB0aGluayBpdCBkb2VzIGFwcGVhciB0byBoYXZlIGEgbm9ybWFsIGRpc3RyaWJ1dGlvbiBidXQgc29tZSB3aWR0aCBzcGFjZXMgYW5kIGEgbGl0dGxlIHBlYWsgYXQgdGhlIGVuZC4gDQoNCiMjIyBFdmFsdWF0aW5nIHRoZSBub3JtYWwgZGlzdHJpYnV0aW9uDQoNCg0KYGBge3IgdHJlbmQtZ2lybHN9DQpnZ3Bsb3QoZGF0YSA9IGRhaXJ5X3F1ZWVuLCBhZXMoc2FtcGxlID0gY2FsX2ZhdCkpICsgDQogIGdlb21fbGluZShzdGF0ID0gInFxIikNCmBgYA0KDQpgYGB7cn0NCnNpbV9ub3JtIDwtIHJub3JtKG4gPSBucm93KGRhaXJ5X3F1ZWVuKSwgbWVhbiA9IGRxbWVhbiwgc2QgPSBkcXNkKQ0KYGBgDQoNCg0KIyMjIEV4ZXJjaXNlIDMNCg0KTWFrZSBhIG5vcm1hbCBwcm9iYWJpbGl0eSBwbG90IG9mIHNpbV9ub3JtLiBEbyBhbGwgb2YgdGhlIHBvaW50cyBmYWxsIG9uIHRoZSBsaW5lPyBIb3cgZG9lcyB0aGlzIHBsb3QgY29tcGFyZSB0byB0aGUgcHJvYmFiaWxpdHkgcGxvdCBmb3IgdGhlIHJlYWwgZGF0YT8gKFNpbmNlIHNpbV9ub3JtIGlzIG5vdCBhIGRhdGEgZnJhbWUsIGl0IGNhbiBiZSBwdXQgZGlyZWN0bHkgaW50byB0aGUgc2FtcGxlIGFyZ3VtZW50IGFuZCB0aGUgZGF0YSBhcmd1bWVudCBjYW4gYmUgZHJvcHBlZC4pLg0KDQpgYGB7cn0NCmdncGxvdChkYXRhID0gTlVMTCwgYWVzKHNhbXBsZSA9IHNpbV9ub3JtKSkgKw0KICBnZW9tX2xpbmUoc3RhdCA9ICJxcSIpDQpgYGANCg0KYGBge3J9DQpxcW5vcm1zaW0oc2FtcGxlID0gY2FsX2ZhdCwgZGF0YSA9IGRhaXJ5X3F1ZWVuKQ0KYGBgDQoNCg0KIyMjIEV4ZXJjaXNlIDQNCg0KRG9lcyB0aGUgbm9ybWFsIHByb2JhYmlsaXR5IHBsb3QgZm9yIHRoZSBjYWxvcmllcyBmcm9tIGZhdCBsb29rIHNpbWlsYXIgdG8gdGhlIHBsb3RzIGNyZWF0ZWQgZm9yIHRoZSBzaW11bGF0ZWQgZGF0YT8gVGhhdCBpcywgZG8gdGhlIHBsb3RzIHByb3ZpZGUgZXZpZGVuY2UgdGhhdCB0aGUgY2Fsb3JpZXMgYXJlIG5lYXJseSBub3JtYWw/Lg0KDQpJdCBkb2VzIGdpdmUgYW4gaW5pdGlhbCBpbXByZXNzaW9uIG9mIGxvb2tpbmcgdmVyeSBzaW1pbGFyLiBJZiB3ZSBsb29rIGF0IHRoZSBzaW1zIGNsb3NlbHkgd2Ugd2lsbCBzb21lIHZhcmlhdGlvbnMgYnV0IGJlc2lkZXMgdGhhdCBpdCBsb29rcyBwcmV0dHkgc2ltaWxhci4gDQoNCg0KIyMjIEV4ZXJjaXNlIDUNCg0KVXNpbmcgdGhlIHNhbWUgdGVjaG5pcXVlLCBkZXRlcm1pbmUgd2hldGhlciBvciBub3QgdGhlIGNhbG9yaWVzIGZyb20gTWNEb25hbGTigJlzIG1lbnUgYXBwZWFyIHRvIGNvbWUgZnJvbSBhIG5vcm1hbCBkaXN0cmlidXRpb24uDQoNCkxvb2tpbmcgYXQgdGhlIE1jRG9uYWxkcyBwbG90IHdlIGNhbiBzZWUgdGhhdCBpdCBoYXMgYSByaWdodCBza2V3LiANCg0KYGBge3J9DQpnZ3Bsb3QoZGF0YSA9IG1jZG9uYWxkcywgYWVzKHNhbXBsZSA9IGNhbG9yaWVzKSkgKyANCiAgZ2VvbV9saW5lKHN0YXQgPSAicXEiKQ0KYGBgDQojIyMgTm9ybWFsIHByb2JhYmlsaXRpZXMNCg0KYGBge3J9DQoxIC0gcG5vcm0ocSA9IDYwMCwgbWVhbiA9IGRxbWVhbiwgc2QgPSBkcXNkKQ0KYGBgDQpgYGB7cn0NCmRhaXJ5X3F1ZWVuICU+JSANCiAgZmlsdGVyKGNhbF9mYXQgPiA2MDApICU+JQ0KICBzdW1tYXJpc2UocGVyY2VudCA9IG4oKSAvIG5yb3coZGFpcnlfcXVlZW4pKQ0KYGBgDQoNCg0KDQoNCiMjIyBFeGVyY2lzZSA2DQoNCldyaXRlIG91dCB0d28gcHJvYmFiaWxpdHkgcXVlc3Rpb25zIHRoYXQgeW91IHdvdWxkIGxpa2UgdG8gYW5zd2VyIGFib3V0IGFueSBvZiB0aGUgcmVzdGF1cmFudHMgaW4gdGhpcyBkYXRhc2V0LiBDYWxjdWxhdGUgdGhvc2UgcHJvYmFiaWxpdGllcyB1c2luZyBib3RoIHRoZSB0aGVvcmV0aWNhbCBub3JtYWwgZGlzdHJpYnV0aW9uIGFzIHdlbGwgYXMgdGhlIGVtcGlyaWNhbCBkaXN0cmlidXRpb24gKGZvdXIgcHJvYmFiaWxpdGllcyBpbiBhbGwpLiBXaGljaCBvbmUgaGFkIGEgY2xvc2VyIGFncmVlbWVudCBiZXR3ZWVuIHRoZSB0d28gbWV0aG9kcz8uDQoNClF1ZXN0aW9uIDE6IFdoYXQgaXMgdGhlIHByb2JhYmlsaXR5IHRoYXQgYSByYW5kb20gaXRlbSBmcm9tIGFueSBvZiB0aGUgZmFzdCBmb29kIHJlc3RhdXJhbnRzIGhhcyBsZXNzIHRoYW4gNTAwIGNhbG9yaWVzPw0KDQpSZWNvbW1lbmRlZCBhbW91bnQgZm8gY2Fsb3JpZXMgZm9yOg0KQnJlYWtmYXN0OiAzMDAtNDAwIGNhbG9yaWVzLiBMdW5jaCBvciBkaW5uZXI6IDQwMC01MDAgY2Fsb3JpZXMNCg0KYGBge3J9DQpmYXN0Zl9tZWFuIDwtIG1lYW4oZmFzdGZvb2QkY2Fsb3JpZXMpDQpmYXN0Zl9zZCA8LSBzZChmYXN0Zm9vZCRjYWxvcmllcykNCg0KcG5vcm0ocSA9IDUwMCwgbWVhbiA9IGZhc3RmX21lYW4sIHNkID0gZmFzdGZfc2QpDQoNCmZhc3Rmb29kICU+JSANCiAgZmlsdGVyKGNhbG9yaWVzIDwgNTAwKSAlPiUNCiAgc3VtbWFyaXNlKHBlcmNlbnQgPSBuKCkgLyBucm93KGZhc3Rmb29kKSkNCmBgYA0KDQpRdWVzdGlvbiAyOiBXaGF0IGlzIHRoZSBwcm9iYWJpbGl0eSB0aGF0IGEgcmFuZG9tIGl0ZW0gZnJvbSBhbnkgb2cgdGhlIHJlc3RhdXJhbnRzIGhhcyBsZXNzIHRoYW4gMTMgZ3JhbXMgb2Ygc2F0dXJhdGVkIGZhdD8NCg0KVGhlIEFtZXJpY2FuIEhlYXJ0IEFzc29jaWF0aW9uIHJlY29tbWVuZHMgYWltaW5nIGZvciBhIGRpZXRhcnkgcGF0dGVybiB0aGF0IGFjaGlldmVzIDUlIHRvIDYlIG9mIGNhbG9yaWVzIGZyb20gc2F0dXJhdGVkIGZhdC4gRm9yIGV4YW1wbGUsIGlmIHlvdSBuZWVkIGFib3V0IDIsMDAwIGNhbG9yaWVzIGEgZGF5LCBubyBtb3JlIHRoYW4gMTIwIG9mIHRoZW0gc2hvdWxkIGNvbWUgZnJvbSBzYXR1cmF0ZWQgZmF0LiBUaGF0J3MgYWJvdXQgMTMgZ3JhbXMgb2Ygc2F0dXJhdGVkIGZhdCBwZXIgZGF5Lg0KDQpgYGB7cn0NCmZmc19tZWFuIDwtIG1lYW4oZmFzdGZvb2Qkc2F0X2ZhdCkNCmZmc19zZCA8LSBzZChmYXN0Zm9vZCRzYXRfZmF0KQ0KDQpwbm9ybShxID0gMTMsIG1lYW4gPSBmZnNfbWVhbiwgc2QgPSBmZnNfc2QpDQoNCmZhc3Rmb29kICU+JSANCiAgZmlsdGVyKHNhdF9mYXQgPCAxMykgJT4lDQogIHN1bW1hcmlzZShwZXJjZW50ID0gbigpIC8gbnJvdyhmYXN0Zm9vZCkpDQpgYGANCg0KDQojIyMgRXhlcmNpc2UgNw0KDQpOb3cgbGV04oCZcyBjb25zaWRlciBzb21lIG9mIHRoZSBvdGhlciB2YXJpYWJsZXMgaW4gdGhlIGRhdGFzZXQuIE91dCBvZiBhbGwgdGhlIGRpZmZlcmVudCByZXN0YXVyYW50cywgd2hpY2ggb25lc+KAmSBkaXN0cmlidXRpb24gaXMgdGhlIGNsb3Nlc3QgdG8gbm9ybWFsIGZvciBzb2RpdW0/Lg0KDQpBcmJ5cw0KDQpgYGB7cn0NCg0KQXJieXMgPC0gZmFzdGZvb2QgJT4lDQogIGZpbHRlcihyZXN0YXVyYW50ID09ICJBcmJ5cyIpDQoNCnFxbm9ybShBcmJ5cyRzb2RpdW0sIG1haW4gPSAiQXJieXMiKQ0KYGBgDQpCdXJnZXIgS2luZw0KDQpgYGB7cn0NCkJ1cmdlcmsgPC0gZmFzdGZvb2QgJT4lDQogIGZpbHRlcihyZXN0YXVyYW50ID09ICJCdXJnZXIgS2luZyIpDQoNCnFxbm9ybShCdXJnZXJrJHNvZGl1bSwgbWFpbiA9ICJCdXJnZXIgS2luZyIpDQpgYGANCg0KQ2hpY2sgRmlsLUENCg0KYGBge3J9DQpDaGlja0YgPC0gZmFzdGZvb2QgJT4lDQogIGZpbHRlcihyZXN0YXVyYW50ID09ICJDaGljayBGaWwtQSIpDQoNCnFxbm9ybShDaGlja0Ykc29kaXVtLCBtYWluID0gIkNoaWNrIEZpbC1BIikNCmBgYA0KDQpEYWlyeSBRdWVlbg0KDQpgYGB7cn0NCkRhaXJ5USA8LSBmYXN0Zm9vZCAlPiUNCiAgZmlsdGVyKHJlc3RhdXJhbnQgPT0gIkRhaXJ5IFF1ZWVuIikNCg0KcXFub3JtKERhaXJ5USRzb2RpdW0sIG1haW4gPSAiRGFpcnkgUXVlZW4iKQ0KYGBgDQoNCk1jRG9uYWxkcw0KDQpgYGB7cn0NCk1jRCA8LSBmYXN0Zm9vZCAlPiUNCiAgZmlsdGVyKHJlc3RhdXJhbnQgPT0gIk1jZG9uYWxkcyIpDQoNCnFxbm9ybShNY0Qkc29kaXVtLCBtYWluID0gIk1jRG9uYWxkJ3MiKQ0KYGBgDQoNClNvbmljDQoNCmBgYHtyfQ0KU29uaWMgPC0gZmFzdGZvb2QgJT4lDQogIGZpbHRlcihyZXN0YXVyYW50ID09ICJTb25pYyIpDQoNCnFxbm9ybShTb25pYyRzb2RpdW0sIG1haW4gPSAiU29uaWMiKQ0KYGBgDQoNCg0KU3Vid2F5IA0KDQpgYGB7cn0NClN1YndheSA8LSBmYXN0Zm9vZCAlPiUNCiAgZmlsdGVyKHJlc3RhdXJhbnQgPT0gIlN1YndheSIpDQoNCnFxbm9ybShTdWJ3YXkkc29kaXVtLCBtYWluID0gIlN1YndheSIpDQpgYGANCg0KVGFjbyBCZWxsDQoNCmBgYHtyfQ0KVGFjb0IgPC0gZmFzdGZvb2QgJT4lDQogIGZpbHRlcihyZXN0YXVyYW50ID09ICJUYWNvIEJlbGwiKQ0KDQpxcW5vcm0oVGFjb0Ikc29kaXVtLCBtYWluID0gIlRhY28gQmVsbCIpDQpgYGANCg0KQnVyZ2VyIEtpbmcgYXBwZWFycyB0byBhIG5vcm1hbCBkaXN0cmlidXRpb24gZm9yIFNvZGl1bS4NCg0KDQojIyMgRXhlcmNpc2UgOA0KTm90ZSB0aGF0IHNvbWUgb2YgdGhlIG5vcm1hbCBwcm9iYWJpbGl0eSBwbG90cyBmb3Igc29kaXVtIGRpc3RyaWJ1dGlvbnMgc2VlbSB0byBoYXZlIGEgc3RlcHdpc2UgcGF0dGVybi4gd2h5IGRvIHlvdSB0aGluayB0aGlzIG1pZ2h0IGJlIHRoZSBjYXNlPw0KSSB0aGluayBpdCBpcyBiZWFjdXNlIG9mIHRoZSBtdWx0aXBsZSBpdGVtIGluIHRoZSBtZW51IHRoYXQgY29udGFpbnMgc29kaXVtLg0KDQojIyMgRXhlcmNpc2UgOQ0KDQpBcyB5b3UgY2FuIHNlZSwgbm9ybWFsIHByb2JhYmlsaXR5IHBsb3RzIGNhbiBiZSB1c2VkIGJvdGggdG8gYXNzZXNzIG5vcm1hbGl0eSBhbmQgdmlzdWFsaXplIHNrZXduZXNzLiBNYWtlIGEgbm9ybWFsIHByb2JhYmlsaXR5IHBsb3QgZm9yIHRoZSB0b3RhbCBjYXJib2h5ZHJhdGVzIGZyb20gYSByZXN0YXVyYW50IG9mIHlvdXIgY2hvaWNlLiBCYXNlZCBvbiB0aGlzIG5vcm1hbCBwcm9iYWJpbGl0eSBwbG90LCBpcyB0aGlzIHZhcmlhYmxlIGxlZnQgc2tld2VkLCBzeW1tZXRyaWMsIG9yIHJpZ2h0IHNrZXdlZD8gVXNlIGEgaGlzdG9ncmFtIHRvIGNvbmZpcm0geW91ciBmaW5kaW5ncy4NCg0KU3Vid2F5Lg0KDQpJIHBpY2tlZCBTdWJ3YXkgYmVjYXVzZSBJIHRob3VnaHQgdGhhdCBpdCB3b3VsZCBiZSB0aGUgImhlYWx0aHkiIG9wdGlvbiBidXQgSSBjYW4gc2VlIHRoYXQgdGhlIGRpc3RyaWJ1dGlvbiBpcyBhc3ltbWV0cmljLCBpdCBoYXMgc2tld2VkIHpvbmVzIGluIGJvdGggc2lkZXMuIEkgdGhpbmsgdGhlIG1lbnUgaXMgdGhlIG1haW4gd2h5IHRoZSBkaXN0cmlidXRpb24gbG9va3MgZGlmZmVyZW50LiANCg0KYGBge3J9DQpoaXN0KFN1YndheSR0b3RhbF9jYXJiKQ0KYGBgDQoNCg0KYGBge3J9DQpxcW5vcm0oU3Vid2F5JHRvdGFsX2NhcmIsIG1haW49IlN1YndheSIpDQpgYGANCg0K