Graphing Functions

require(ggplot2)
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 4.2.2
require(ggcorrplot)
## Loading required package: ggcorrplot
## Warning: package 'ggcorrplot' was built under R version 4.2.2
corfunction=function(d){
  mycorr=cor(d[, 1:ncol(d)]); p.mat=ggcorrplot::cor_pmat(d[,1:ncol(d)])
  myplot=ggcorrplot(mycorr, hc.order=TRUE,type="lower",
                    colors=c("red", "white","green"),tl.cex = 8, 
                    tl.col = "black", lab=TRUE, lab_size=2, p.mat=p.mat,
                    insig="pch", pch=4)
  print(myplot)}

Import Data

require(foreign)
## Loading required package: foreign
require(psych)
## Loading required package: psych
## Warning: package 'psych' was built under R version 4.2.2
## 
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
require(Amelia)
## Loading required package: Amelia
## Warning: package 'Amelia' was built under R version 4.2.2
## Loading required package: Rcpp
## ## 
## ## Amelia II: Multiple Imputation
## ## (Version 1.8.0, built: 2021-05-26)
## ## Copyright (C) 2005-2023 James Honaker, Gary King and Matthew Blackwell
## ## Refer to http://gking.harvard.edu/amelia/ for more information
## ##
mydata=read.spss('c:/users/lfult/downloads/brad.sav', to.data.frame=T)
mydata$DEPENDENT_VARIABLES=mydata$INDEPENDENT_VARIABLES=NULL

mydata$Region=as.factor(mydata$C_Region2*2+
                          mydata$C_Region3*3+mydata$C_Region4*4+
                          mydata$C_Region5*5+mydata$C_Region6*6+
                          mydata$C_Region7*7+mydata$C_Region8*8+ mydata$C_Region9*9)
mydata$C_Region2=mydata$C_Region3=mydata$C_Region4=mydata$C_Region5=mydata$C_Region6=mydata$C_Region7=mydata$C_Region8=mydata$C_Region9=NULL
mydata$Region=addNA(mydata$Region, 0)

Reformat Factors

mydata$PROVIDER_NUMBER=NULL

mydata$MCI=as.factor(round(mydata$MARKET_CONCENT_INDEX,0))

mydata$MARKET_CONCENT_INDEX=NULL

mydata$Type=as.factor(mydata$SOLE_COMMUNITY_HOSPITAL+mydata$FOR_PROFIT*2+mydata$GOVT_OPERATED*3)

mydata$Urban=as.factor(mydata$GEOGRAPHIC_CLASSIFICATION_Urban_0)

mydata$Region=as.factor(mydata$Region)

mydata$FOR_PROFIT=mydata$SOLE_COMMUNITY_HOSPITAL=mydata$GOVT_OPERATED=
  mydata$GEOGRAPHIC_CLASSIFICATION_Urban_0=NULL

Identify Missing by Column

myc = function(x){
  co=rep(0,ncol(mydata))
  for (i in 1:ncol(x)){co[i]=sum(is.na(x[1:nrow(x), i]))}
  names(co)=colnames(mydata)
  co=sort(co, decreasing=T)/nrow(mydata)
  print(length(co[co>.2]))
  tmp=co[1:13]
  barplot(tmp, las=2, cex.names=.5, space=0)
  print(names(tmp))
  return(co)
}

myc(mydata)
## [1] 1

##  [1] "TOTAL_PERFORMANCE_SCORE"                         
##  [2] "DEBT_TO_EQUITY_RATIO"                            
##  [3] "MCI"                                             
##  [4] "CHARITY_CARE_COSTS_Scaled"                       
##  [5] "PERCENET_MEDICAID_DAYS"                          
##  [6] "SERIOUS_COMPLICATION_RATE"                       
##  [7] "PERCENT_MEDICARE_DAYS"                           
##  [8] "AVG_AGE_FACILITY"                                
##  [9] "BAD_DEBT_NPR_RATIO"                              
## [10] "Type"                                            
## [11] "TOT_UNCOMPENSATED_CARE_UNREIMBURSED_COSTS_Scaled"
## [12] "CASE_MIX_INDEX"                                  
## [13] "CC_MCC_RATE"
##                          TOTAL_PERFORMANCE_SCORE 
##                                       0.23100872 
##                             DEBT_TO_EQUITY_RATIO 
##                                       0.17714819 
##                                              MCI 
##                                       0.16625156 
##                        CHARITY_CARE_COSTS_Scaled 
##                                       0.14601494 
##                           PERCENET_MEDICAID_DAYS 
##                                       0.14601494 
##                        SERIOUS_COMPLICATION_RATE 
##                                       0.14290162 
##                            PERCENT_MEDICARE_DAYS 
##                                       0.14103362 
##                                 AVG_AGE_FACILITY 
##                                       0.13075965 
##                               BAD_DEBT_NPR_RATIO 
##                                       0.10554172 
##                                             Type 
##                                       0.10149440 
## TOT_UNCOMPENSATED_CARE_UNREIMBURSED_COSTS_Scaled 
##                                       0.10118306 
##                                   CASE_MIX_INDEX 
##                                       0.10087173 
##                                      CC_MCC_RATE 
##                                       0.10087173 
##                      PX_REV_PER_DISCHARGE_Scaled 
##                                       0.09869240 
##                                  BED_UTILIZATION 
##                                       0.09869240 
##                               AVG_LENGTH_OF_STAY 
##                                       0.09869240 
##                      NET_OPERATING_PROFIT_MARGIN 
##                                       0.09806974 
##                                 RETURN_ON_ASSETS 
##                                       0.09806974 
##                              NPR_PER_STAFFED_BED 
##                                       0.09806974 
##                           EBITDA_PER_STAFFED_BED 
##                                       0.09806974 
##                       NET_INCOME_PER_STAFFED_BED 
##                                       0.09806974 
##                                 LABOR_COMP_RATIO 
##                                       0.09806974 
##                              STAFFED_BEDS_SCALED 
##                                       0.09806974 
##                                            Urban 
##                                       0.09806974 
##                                           Region 
##                                       0.00000000

Just For Now, Delete Missing

mydata$AVG_AGE_FACILITY=NULL #not interesting in models
mydata=na.omit(mydata)
corfunction(mydata[,c(1:20)])

describe(mydata)
##                                                  vars    n  mean    sd median
## NET_OPERATING_PROFIT_MARGIN                         1 2043  0.00  0.16   0.01
## RETURN_ON_ASSETS                                    2 2043  0.06  0.62   0.06
## PX_REV_PER_DISCHARGE_Scaled                         3 2043  0.03  0.01   0.03
## NPR_PER_STAFFED_BED                                 4 2043  1.46  0.73   1.33
## EBITDA_PER_STAFFED_BED                              5 2043  0.09  0.25   0.08
## NET_INCOME_PER_STAFFED_BED                          6 2043  0.11  0.20   0.08
## DEBT_TO_EQUITY_RATIO                                7 2043  0.86 18.16   0.22
## LABOR_COMP_RATIO                                    8 2043  0.43  0.12   0.42
## TOTAL_PERFORMANCE_SCORE                             9 2043 33.11 10.86  32.00
## SERIOUS_COMPLICATION_RATE                          10 2043  0.89  0.18   0.87
## CHARITY_CARE_COSTS_Scaled                          11 2043  9.40 15.72   4.44
## TOT_UNCOMPENSATED_CARE_UNREIMBURSED_COSTS_Scaled   12 2043 23.82 35.83  13.29
## BAD_DEBT_NPR_RATIO                                 13 2043  0.08  0.09   0.05
## BED_UTILIZATION                                    14 2043  0.54  0.18   0.56
## STAFFED_BEDS_SCALED                                15 2043  0.24  0.22   0.18
## CASE_MIX_INDEX                                     16 2043  1.68  0.28   1.64
## CC_MCC_RATE                                        17 2043  0.02  0.01   0.02
## PERCENT_MEDICARE_DAYS                              18 2043  0.13  0.06   0.13
## PERCENET_MEDICAID_DAYS                             19 2043  0.04  0.04   0.03
## AVG_LENGTH_OF_STAY                                 20 2043  4.38  0.90   4.28
## Region*                                            21 2010  5.17  2.42   5.00
## MCI*                                               22 2043  1.30  0.46   1.00
## Type*                                              23 2043  1.95  1.22   1.00
## Urban*                                             24 2043  1.05  0.22   1.00
##                                                  trimmed   mad     min    max
## NET_OPERATING_PROFIT_MARGIN                         0.01  0.11   -1.64   0.54
## RETURN_ON_ASSETS                                    0.06  0.09  -25.79   3.10
## PX_REV_PER_DISCHARGE_Scaled                         0.03  0.01    0.00   0.19
## NPR_PER_STAFFED_BED                                 1.39  0.58    0.01  11.45
## EBITDA_PER_STAFFED_BED                              0.09  0.16   -2.38   2.24
## NET_INCOME_PER_STAFFED_BED                          0.10  0.13   -1.43   2.27
## DEBT_TO_EQUITY_RATIO                                0.31  0.39 -167.52 696.22
## LABOR_COMP_RATIO                                    0.42  0.12    0.15   0.98
## TOTAL_PERFORMANCE_SCORE                            32.37 10.19    6.00  76.67
## SERIOUS_COMPLICATION_RATE                           0.88  0.16    0.44   1.94
## CHARITY_CARE_COSTS_Scaled                           6.15  5.04    0.00 228.31
## TOT_UNCOMPENSATED_CARE_UNREIMBURSED_COSTS_Scaled   16.87 11.94    0.43 539.59
## BAD_DEBT_NPR_RATIO                                  0.06  0.04    0.00   0.95
## BED_UTILIZATION                                     0.55  0.20    0.07   1.00
## STAFFED_BEDS_SCALED                                 0.20  0.14    0.01   2.73
## CASE_MIX_INDEX                                      1.66  0.24    0.94   3.62
## CC_MCC_RATE                                         0.02  0.01    0.00   0.21
## PERCENT_MEDICARE_DAYS                               0.13  0.05    0.00   0.41
## PERCENET_MEDICAID_DAYS                              0.03  0.03    0.00   0.62
## AVG_LENGTH_OF_STAY                                  4.33  0.81    1.00   8.40
## Region*                                             5.13  2.97    1.00  10.00
## MCI*                                                1.25  0.00    1.00   2.00
## Type*                                               1.77  0.00    1.00   5.00
## Urban*                                              1.00  0.00    1.00   2.00
##                                                   range   skew kurtosis   se
## NET_OPERATING_PROFIT_MARGIN                        2.18  -2.02    14.87 0.00
## RETURN_ON_ASSETS                                  28.89 -36.37  1525.57 0.01
## PX_REV_PER_DISCHARGE_Scaled                        0.19   2.55    15.01 0.00
## NPR_PER_STAFFED_BED                               11.44   2.51    20.21 0.02
## EBITDA_PER_STAFFED_BED                             4.61  -0.70    14.76 0.01
## NET_INCOME_PER_STAFFED_BED                         3.70   1.48    14.65 0.00
## DEBT_TO_EQUITY_RATIO                             863.74  28.14  1069.83 0.40
## LABOR_COMP_RATIO                                   0.83   0.88     1.10 0.00
## TOTAL_PERFORMANCE_SCORE                           70.67   0.69     0.61 0.24
## SERIOUS_COMPLICATION_RATE                          1.50   1.03     2.25 0.00
## CHARITY_CARE_COSTS_Scaled                        228.31   5.32    45.43 0.35
## TOT_UNCOMPENSATED_CARE_UNREIMBURSED_COSTS_Scaled 539.16   5.68    48.66 0.79
## BAD_DEBT_NPR_RATIO                                 0.95   3.48    18.73 0.00
## BED_UTILIZATION                                    0.93  -0.19    -0.60 0.00
## STAFFED_BEDS_SCALED                                2.72   3.01    17.62 0.00
## CASE_MIX_INDEX                                     2.68   1.00     2.69 0.01
## CC_MCC_RATE                                        0.21   4.54    39.68 0.00
## PERCENT_MEDICARE_DAYS                              0.40   0.79     1.15 0.00
## PERCENET_MEDICAID_DAYS                             0.62   3.15    22.28 0.00
## AVG_LENGTH_OF_STAY                                 7.40   0.65     1.19 0.02
## Region*                                            9.00   0.14    -0.97 0.05
## MCI*                                               1.00   0.88    -1.22 0.01
## Type*                                              4.00   0.87    -0.61 0.03
## Urban*                                             1.00   4.11    14.87 0.00

Delete Highly COrrelated Variables

mydata$EBITDA_PER_STAFFED_BED=NULL
mydata$CHARITY_CARE_COSTS_Scaled=NULL

Min-Max Scale and Make Positive Definite

myf=function(x)
{
  x=(x-min(x))/(max(x)-min(x))
  x=x+.01
  return(x)
  
}

newdata=mydata
newdata[,1:19]=as.data.frame(lapply(newdata[,1:18],myf))
describe(newdata)
##                                                  vars    n mean   sd median
## NET_OPERATING_PROFIT_MARGIN                         1 2043 0.76 0.07   0.77
## RETURN_ON_ASSETS                                    2 2043 0.90 0.02   0.90
## PX_REV_PER_DISCHARGE_Scaled                         3 2043 0.15 0.07   0.13
## NPR_PER_STAFFED_BED                                 4 2043 0.14 0.06   0.13
## NET_INCOME_PER_STAFFED_BED                          5 2043 0.43 0.05   0.42
## DEBT_TO_EQUITY_RATIO                                6 2043 0.20 0.02   0.20
## LABOR_COMP_RATIO                                    7 2043 0.35 0.15   0.33
## TOTAL_PERFORMANCE_SCORE                             8 2043 0.39 0.15   0.38
## SERIOUS_COMPLICATION_RATE                           9 2043 0.31 0.12   0.30
## TOT_UNCOMPENSATED_CARE_UNREIMBURSED_COSTS_Scaled   10 2043 0.05 0.07   0.03
## BAD_DEBT_NPR_RATIO                                 11 2043 0.10 0.10   0.07
## BED_UTILIZATION                                    12 2043 0.52 0.19   0.54
## STAFFED_BEDS_SCALED                                13 2043 0.09 0.08   0.07
## CASE_MIX_INDEX                                     14 2043 0.28 0.10   0.27
## CC_MCC_RATE                                        15 2043 0.10 0.07   0.09
## PERCENT_MEDICARE_DAYS                              16 2043 0.33 0.14   0.32
## PERCENET_MEDICAID_DAYS                             17 2043 0.07 0.07   0.05
## AVG_LENGTH_OF_STAY                                 18 2043 0.47 0.12   0.45
## Region                                             19 2043 0.76 0.07   0.77
## MCI*                                               20 2043 1.30 0.46   1.00
## Type*                                              21 2043 1.95 1.22   1.00
## Urban*                                             22 2043 1.05 0.22   1.00
##                                                  trimmed  mad  min  max range
## NET_OPERATING_PROFIT_MARGIN                         0.77 0.05 0.01 1.01     1
## RETURN_ON_ASSETS                                    0.90 0.00 0.01 1.01     1
## PX_REV_PER_DISCHARGE_Scaled                         0.14 0.05 0.01 1.01     1
## NPR_PER_STAFFED_BED                                 0.13 0.05 0.01 1.01     1
## NET_INCOME_PER_STAFFED_BED                          0.42 0.04 0.01 1.01     1
## DEBT_TO_EQUITY_RATIO                                0.20 0.00 0.01 1.01     1
## LABOR_COMP_RATIO                                    0.34 0.14 0.01 1.01     1
## TOTAL_PERFORMANCE_SCORE                             0.38 0.14 0.01 1.01     1
## SERIOUS_COMPLICATION_RATE                           0.30 0.11 0.01 1.01     1
## TOT_UNCOMPENSATED_CARE_UNREIMBURSED_COSTS_Scaled    0.04 0.02 0.01 1.01     1
## BAD_DEBT_NPR_RATIO                                  0.08 0.04 0.01 1.01     1
## BED_UTILIZATION                                     0.53 0.21 0.01 1.01     1
## STAFFED_BEDS_SCALED                                 0.08 0.05 0.01 1.01     1
## CASE_MIX_INDEX                                      0.28 0.09 0.01 1.01     1
## CC_MCC_RATE                                         0.09 0.04 0.01 1.01     1
## PERCENT_MEDICARE_DAYS                               0.32 0.13 0.01 1.01     1
## PERCENET_MEDICAID_DAYS                              0.06 0.04 0.01 1.01     1
## AVG_LENGTH_OF_STAY                                  0.46 0.11 0.01 1.01     1
## Region                                              0.77 0.05 0.01 1.01     1
## MCI*                                                1.25 0.00 1.00 2.00     1
## Type*                                               1.77 0.00 1.00 5.00     4
## Urban*                                              1.00 0.00 1.00 2.00     1
##                                                    skew kurtosis   se
## NET_OPERATING_PROFIT_MARGIN                       -2.02    14.87 0.00
## RETURN_ON_ASSETS                                 -36.37  1525.57 0.00
## PX_REV_PER_DISCHARGE_Scaled                        2.55    15.01 0.00
## NPR_PER_STAFFED_BED                                2.51    20.21 0.00
## NET_INCOME_PER_STAFFED_BED                         1.48    14.65 0.00
## DEBT_TO_EQUITY_RATIO                              28.14  1069.83 0.00
## LABOR_COMP_RATIO                                   0.88     1.10 0.00
## TOTAL_PERFORMANCE_SCORE                            0.69     0.61 0.00
## SERIOUS_COMPLICATION_RATE                          1.03     2.25 0.00
## TOT_UNCOMPENSATED_CARE_UNREIMBURSED_COSTS_Scaled   5.68    48.66 0.00
## BAD_DEBT_NPR_RATIO                                 3.48    18.73 0.00
## BED_UTILIZATION                                   -0.19    -0.60 0.00
## STAFFED_BEDS_SCALED                                3.01    17.62 0.00
## CASE_MIX_INDEX                                     1.00     2.69 0.00
## CC_MCC_RATE                                        4.54    39.68 0.00
## PERCENT_MEDICARE_DAYS                              0.79     1.15 0.00
## PERCENET_MEDICAID_DAYS                             3.15    22.28 0.00
## AVG_LENGTH_OF_STAY                                 0.65     1.19 0.00
## Region                                            -2.02    14.87 0.00
## MCI*                                               0.88    -1.22 0.01
## Type*                                              0.87    -0.61 0.03
## Urban*                                             4.11    14.87 0.00

Box Cox Transformations

mymat=as.matrix(newdata[, 1:18])

require(car)
## Loading required package: car
## Loading required package: carData
## 
## Attaching package: 'car'
## The following object is masked from 'package:psych':
## 
##     logit
mybox=powerTransform(mymat~1)
mybox
## Estimated transformation parameters 
##                      NET_OPERATING_PROFIT_MARGIN 
##                                       3.25660544 
##                                 RETURN_ON_ASSETS 
##                                       7.44016256 
##                      PX_REV_PER_DISCHARGE_Scaled 
##                                       0.17678801 
##                              NPR_PER_STAFFED_BED 
##                                       0.19508175 
##                       NET_INCOME_PER_STAFFED_BED 
##                                       0.82278724 
##                             DEBT_TO_EQUITY_RATIO 
##                                       0.36668676 
##                                 LABOR_COMP_RATIO 
##                                       0.40548949 
##                          TOTAL_PERFORMANCE_SCORE 
##                                       0.53790342 
##                        SERIOUS_COMPLICATION_RATE 
##                                       0.44274518 
## TOT_UNCOMPENSATED_CARE_UNREIMBURSED_COSTS_Scaled 
##                                      -0.32292914 
##                               BAD_DEBT_NPR_RATIO 
##                                      -0.11951089 
##                                  BED_UTILIZATION 
##                                       0.41346084 
##                              STAFFED_BEDS_SCALED 
##                                      -0.07777543 
##                                   CASE_MIX_INDEX 
##                                       0.40948035 
##                                      CC_MCC_RATE 
##                                       0.04298725 
##                            PERCENT_MEDICARE_DAYS 
##                                       0.43794168 
##                           PERCENET_MEDICAID_DAYS 
##                                      -0.12806952 
##                               AVG_LENGTH_OF_STAY 
##                                       0.43571481
testTransform(mybox,mybox$lambda)
##                                                                                                                  LRT
## LR test, lambda = (3.26 7.44 0.18 0.2 0.82 0.37 0.41 0.54 0.44 -0.32 -0.12 0.41 -0.08 0.41 0.04 0.44 -0.13 0.44)   0
##                                                                                                                  df
## LR test, lambda = (3.26 7.44 0.18 0.2 0.82 0.37 0.41 0.54 0.44 -0.32 -0.12 0.41 -0.08 0.41 0.04 0.44 -0.13 0.44) 18
##                                                                                                                  pval
## LR test, lambda = (3.26 7.44 0.18 0.2 0.82 0.37 0.41 0.54 0.44 -0.32 -0.12 0.41 -0.08 0.41 0.04 0.44 -0.13 0.44)    1
require(ResourceSelection)
## Loading required package: ResourceSelection
## ResourceSelection 0.3-5   2019-07-22
for (i in 1:18)
  {
  newdata[,i]=newdata[,i]^mybox$lambda[i]
}

Kernel Density Estimates / Pairs Plots

kdepairs(newdata[,c(1:9)])
## Warning in par(usr): argument 1 does not name a graphical parameter

## Warning in par(usr): argument 1 does not name a graphical parameter

## Warning in par(usr): argument 1 does not name a graphical parameter

## Warning in par(usr): argument 1 does not name a graphical parameter

## Warning in par(usr): argument 1 does not name a graphical parameter

## Warning in par(usr): argument 1 does not name a graphical parameter

## Warning in par(usr): argument 1 does not name a graphical parameter

## Warning in par(usr): argument 1 does not name a graphical parameter

## Warning in par(usr): argument 1 does not name a graphical parameter

kdepairs(newdata[,c(10:18)])
## Warning in par(usr): argument 1 does not name a graphical parameter

## Warning in par(usr): argument 1 does not name a graphical parameter

## Warning in par(usr): argument 1 does not name a graphical parameter

## Warning in par(usr): argument 1 does not name a graphical parameter

## Warning in par(usr): argument 1 does not name a graphical parameter

## Warning in par(usr): argument 1 does not name a graphical parameter

## Warning in par(usr): argument 1 does not name a graphical parameter

## Warning in par(usr): argument 1 does not name a graphical parameter

## Warning in par(usr): argument 1 does not name a graphical parameter

Initial Regression After StepAIC (Note the Outliers)

library(kableExtra)
## Warning: package 'kableExtra' was built under R version 4.2.2
## Warning in !is.null(rmarkdown::metadata$output) && rmarkdown::metadata$output
## %in% : 'length(x) = 2 > 1' in coercion to 'logical(1)'
library(MASS)


mylm=lm(PX_REV_PER_DISCHARGE_Scaled ~RETURN_ON_ASSETS + NPR_PER_STAFFED_BED + 
    NET_INCOME_PER_STAFFED_BED + LABOR_COMP_RATIO + SERIOUS_COMPLICATION_RATE + 
    TOT_UNCOMPENSATED_CARE_UNREIMBURSED_COSTS_Scaled + BAD_DEBT_NPR_RATIO + 
    BED_UTILIZATION + STAFFED_BEDS_SCALED + CASE_MIX_INDEX + 
    CC_MCC_RATE + PERCENT_MEDICARE_DAYS + PERCENET_MEDICAID_DAYS + 
    AVG_LENGTH_OF_STAY + Region + Type, data=newdata)
summary(mylm)
## 
## Call:
## lm(formula = PX_REV_PER_DISCHARGE_Scaled ~ RETURN_ON_ASSETS + 
##     NPR_PER_STAFFED_BED + NET_INCOME_PER_STAFFED_BED + LABOR_COMP_RATIO + 
##     SERIOUS_COMPLICATION_RATE + TOT_UNCOMPENSATED_CARE_UNREIMBURSED_COSTS_Scaled + 
##     BAD_DEBT_NPR_RATIO + BED_UTILIZATION + STAFFED_BEDS_SCALED + 
##     CASE_MIX_INDEX + CC_MCC_RATE + PERCENT_MEDICARE_DAYS + PERCENET_MEDICAID_DAYS + 
##     AVG_LENGTH_OF_STAY + Region + Type, data = newdata)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.09402 -0.00494  0.00003  0.00482  0.38407 
## 
## Coefficients:
##                                                    Estimate Std. Error t value
## (Intercept)                                      -1.071e-02  2.007e-02  -0.534
## RETURN_ON_ASSETS                                  2.363e-02  1.090e-02   2.167
## NPR_PER_STAFFED_BED                               1.032e+00  9.247e-03 111.601
## NET_INCOME_PER_STAFFED_BED                       -1.749e-02  7.843e-03  -2.230
## LABOR_COMP_RATIO                                  8.782e-03  3.788e-03   2.319
## SERIOUS_COMPLICATION_RATE                         6.527e-03  2.990e-03   2.183
## TOT_UNCOMPENSATED_CARE_UNREIMBURSED_COSTS_Scaled -3.481e-03  8.161e-04  -4.265
## BAD_DEBT_NPR_RATIO                                2.163e-02  3.162e-03   6.841
## BED_UTILIZATION                                  -3.631e-01  3.803e-03 -95.486
## STAFFED_BEDS_SCALED                               2.899e-02  8.773e-03   3.305
## CASE_MIX_INDEX                                    3.437e-02  5.169e-03   6.649
## CC_MCC_RATE                                      -6.307e-02  1.493e-02  -4.224
## PERCENT_MEDICARE_DAYS                             1.383e-02  2.895e-03   4.777
## PERCENET_MEDICAID_DAYS                            1.496e-02  2.231e-03   6.703
## AVG_LENGTH_OF_STAY                                3.196e-01  5.174e-03  61.769
## Region                                            1.010e-02  6.007e-03   1.682
## Type1                                             7.002e-04  1.075e-03   0.652
## Type2                                             9.395e-05  8.840e-04   0.106
## Type3                                             3.138e-03  1.007e-03   3.116
## Type4                                             2.153e-03  1.843e-03   1.168
##                                                  Pr(>|t|)    
## (Intercept)                                      0.593638    
## RETURN_ON_ASSETS                                 0.030316 *  
## NPR_PER_STAFFED_BED                               < 2e-16 ***
## NET_INCOME_PER_STAFFED_BED                       0.025832 *  
## LABOR_COMP_RATIO                                 0.020510 *  
## SERIOUS_COMPLICATION_RATE                        0.029185 *  
## TOT_UNCOMPENSATED_CARE_UNREIMBURSED_COSTS_Scaled 2.09e-05 ***
## BAD_DEBT_NPR_RATIO                               1.04e-11 ***
## BED_UTILIZATION                                   < 2e-16 ***
## STAFFED_BEDS_SCALED                              0.000967 ***
## CASE_MIX_INDEX                                   3.79e-11 ***
## CC_MCC_RATE                                      2.51e-05 ***
## PERCENT_MEDICARE_DAYS                            1.91e-06 ***
## PERCENET_MEDICAID_DAYS                           2.64e-11 ***
## AVG_LENGTH_OF_STAY                                < 2e-16 ***
## Region                                           0.092730 .  
## Type1                                            0.514778    
## Type2                                            0.915369    
## Type3                                            0.001856 ** 
## Type4                                            0.242796    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.01324 on 2023 degrees of freedom
## Multiple R-squared:  0.9417, Adjusted R-squared:  0.9412 
## F-statistic:  1721 on 19 and 2023 DF,  p-value: < 2.2e-16
#mystep=stepAIC(mylm)

hist(mylm$residuals)

par(ask=F)
plot(mylm)