a = 4.75 +/- 0.7071068
Equation Review
2/12/23
\[\bar x = \frac{\sum x_i}{n}\]
\[\eqalign{a &=& \left[4,4,4,5,5,5,5,6\right]\\ \bar a &=& \frac{\left(4+4+4+5+5+5+5+6\right)}{8}=\frac{38}{8} = 4.75\\ b &=& \left[4,5,5,6,6,7,7,8\right]\\ \bar b &=& \frac{\left(4+5+5+6+6+7+7+8\right)}{8}=\frac{48}{8}=6.0\\ }\]
\[\eqalign{\displaystyle\sigma &=& \sqrt{\frac{\sum (x - \bar x)^2}{n-1}}\\ &=&\sqrt{\frac{\sum x^2 - \left(\sum x\right)^2/n}{n-1}}\\}\]
Step 1 Calculating sums
id | x | \(\bar x\) | \(x- \bar x\) | \((x- \bar x)^2\) |
---|---|---|---|---|
a1 | 4 | 4.75 | -0.75 | 0.5625 |
a2 | 4 | 4.75 | -0.75 | 0.5625 |
a3 | 4 | 4.75 | -0.75 | 0.5625 |
a4 | 5 | 4.75 | 0.25 | 0.0625 |
a5 | 5 | 4.75 | 0.25 | 0.0625 |
a6 | 5 | 4.75 | 0.25 | 0.0625 |
a7 | 5 | 4.75 | 0.25 | 0.0625 |
a8 | 6 | 4.75 | 1.25 | 1.5625 |
x | 38 | \(\sum dev^2\) | 3.5 |
Step 2: Calculating Std Dev
\[\eqalign{ \sum x &=& 38\\ n&=& 8\\ average&=& \left(\sum{x}\right) = 38/8 = 4.75\\ df &=& n-1 = 7\\ std\ dev &=& \sqrt{\sum (dev^2)/df} \\ &=& \sqrt{3.5/7} = 0.707107\\}\]
Step 1 Calculating sums
id | x | \(\bar x\) | \(x- \bar x\) | \((x- \bar x)^2\) |
---|---|---|---|---|
b1 | 4 | 6 | -2 | 4 |
b2 | 5 | 6 | -1 | 1 |
b3 | 5 | 6 | -1 | 1 |
b4 | 6 | 6 | 0 | 0 |
b5 | 6 | 6 | 0 | 0 |
b6 | 7 | 6 | 1 | 1 |
b7 | 7 | 6 | 1 | 1 |
b8 | 8 | 6 | 2 | 4 |
x | 48 | \(\sum dev^2\) | 12 |
Step 2: Calculating Std Dev
\[\eqalign{ \sum x &=& 48\\ n&=& 8\\ average&=& \left(\sum{x}\right)/n\\ &=& 48/8 = 6 \\ df &=& n-1 = 7\\ std\ dev &=& \sqrt{\sum (dev^2)/df} \\ &=& \sqrt{12/7} = 1.309307\\}\]
Step 1 Calculating sums
id | x | \(x^2\) |
---|---|---|
a1 | 4 | 16 |
a2 | 4 | 16 |
a3 | 4 | 16 |
a4 | 5 | 25 |
a5 | 5 | 25 |
a6 | 5 | 25 |
a7 | 5 | 25 |
a8 | 6 | 36 |
sum | 38 | 184 |
Step 2: Calculating Std Dev
\[\eqalign{ \sum x &=& 38\\ n&=& 8\\ \sum x^2 &=& 184\\ \left(\sum x\right)^2/n&=& 38^2/8 = 180.5\\ difference&=& 184-180.5 =3.5\\ df &=& n-1 = 8-1 = 7\\ std\ dev &=& \sqrt{difference/df} \\ &=& \sqrt{3.5/7} = 0.707107\\}\]
Step 1 Calculating sums
id | x | \(x^2\) |
---|---|---|
b1 | 4 | 16 |
b2 | 4 | 16 |
b3 | 4 | 16 |
b4 | 5 | 25 |
b5 | 5 | 25 |
b6 | 5 | 25 |
b7 | 5 | 25 |
b8 | 6 | 36 |
sum | 48 | 300 |
Step 2: Calculating Std Dev
\[\eqalign{ \sum x &=& 48\\ n&=& 8\\ \sum x^2 &=& 300 \\ \left(\sum x\right)^2/n&=& 48^2/8= 2304/8 = 288\\ difference&=& 300 - 288 = 12\\ df &=& n-1 = 8-1 = 7\\ std\ dev &=& \sqrt{difference/df} \\ &=& \sqrt{12/7} = 1.309307\\}\]
\[f\left(x\right) = \frac{1}{\sqrt{2\pi \sigma}}e^{-\frac{\left(x-\mu\right)^2}{2\sigma^2}}\]
\[se = \frac{std\ dev}{\sqrt{n}}\]
se a̅ = 0.7071068 / 2.828427 = 0.25
se b̅ = 1.309307 / 2.828427 = 0.46291
\[\displaystyle{t=\frac{difference}{standard\ error}}\]
\[{\displaystyle t={\frac {{\bar {x}}-\mu _{0}}{ \frac{s}{\sqrt {n}}}} = \frac{\Delta x}{\frac{\sigma}{\sqrt{n}}}}\]
\[df = n - 1\]
\[{\displaystyle t={\frac {{\bar {X}}_{1}-{\bar {X}}_{2}}{s_{p}{\sqrt {\frac {2}{n}}}}}}={\frac {{\bar {X}}_{1}-{\bar {X}}_{2}}{\sqrt {\frac {s_{1}^{2}+s_{2}^{2}}{n}}}}\]
\[{\displaystyle s_{p}={\sqrt {\frac {s_{1}^{2}+s_{2}^{2}}{2}}}}\] \[df= 2n - 2\]
\[t = \frac{\bar x_1 - \bar x_2}{s_p\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}\]
\[s_p = \sqrt{\frac{(n_1-1)s_1^2 +(n_2-1)s_2^2}{n_1+n_2-2}}\]
\[df = n_1 + n_2 -2\]
\[t = \frac{\quad\bar x_1 - \bar x_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \]
\[{\displaystyle \mathrm {d.f.} ={\frac {\left({\frac {s_{1}^{2}}{n_{1}}}+{\frac {s_{2}^{2}}{n_{2}}}\right)^{2}}{{\frac {\left(s_{1}^{2}/n_{1}\right)^{2}}{n_{1}-1}}+{\frac {\left(s_{2}^{2}/n_{2}\right)^{2}}{n_{2}-1}}}}} \]
\[\displaystyle \left[t = \frac{\Delta x}{\frac{\sigma}{\sqrt{n}}}\right] \quad \longrightarrow\quad \left[n = \left(\frac{t \sigma}{\Delta x}\right)^2\right]\] \[n = \left(\frac{t\sigma}{M}\right)^2\]
To have 95% confidence on experiments with only 0.5 \(\sigma\) separation:
\[n = t^2\left(\frac{\sigma}{\Delta x}\right)^2=1.96^2\left(\frac{\sigma}{0.5\sigma}\right)^2=15.3664=16\]
120 people work at Company Q, 85 of which drink coffee daily, find the 99% confidence interval of the true proportion of people who drink coffee at Company Q on a daily basis.
\[\eqalign{CI &=& \hat p \pm z \times \sqrt{\frac{p(1-p)}{n}}\\ &=&\frac{85}{120} \pm 2.58 \times \sqrt{\frac{\frac{85}{120}\left(1 - \frac{85}{120}\right)}{120}}= 92.83\\}\]
Sample size necessary to estimate the proportion of people in a supermarket that identify as vegan with 95% confidence, and a margin of error of 5%. Assume a population proportion of 0.5, and unlimited population size.
\[n=\frac{z^2 \times \hat p(1- \hat p)}{\epsilon^2}=1.96^2 \times \frac{0.5(1-0.5)}{0.05^2}=384.16\]
Sample size needed to estimate the proportion of German speakers in a college with 95% confidence, and a margin of error of 5%. Assume a population proportion of 0.2, and population of 1,200 students.
\[\eqalign{n &=& \frac{\frac{z^2 \times \hat p(1- \hat p)}{\epsilon^2}}{1+\frac{z^2 \times \hat p(1- \hat p)}{\epsilon^2 N}} = \frac{\frac{1.96^2 \times 0.2(1- 0.2)}{0.05^2}}{1+\frac{1.96^2 \times 0.2(1- 0.2)}{0.05^2 \times 1200}}\\ &=&\frac{\frac{3.84\times 0.16}{0.0025}}{1+\frac{3.84\times 0.16}{0.0025\times 1200}} = \frac{245.76}{3.6144} = 67.995 \\ }\]
The variables in this formula are:
\[\eqalign{n &=& sample\ size\\ N &=& population\ of\ the\ study\\ e &=& margin\ of\ error\ in\ the\ calculation\\ }\]
\[n=\frac{N}{(1 + N e^2)}\]
\[{\Large\sum} \left(\frac{(observed-expected)^2}{expected}\right)\]
\[\chi^2 = \frac{(3-5)^2}{5} + \frac{(7-5)^2}{5} = \frac{4}{5} + \frac{4}{5} = 1.6\]
df = 1 ; p = 0.7940968
\[\chi ^{2}=\sum _{{i=1}}^{{r}}\sum _{{j=1}}^{{c}}{(O_{{i,j}}-E_{{i,j}})^{2} \over E_{{i,j}}}\]
\[df = r + c - 2\]
male: 172 175 175 180 180 180 185 195
female: 147 158 160 160 160 164 165 171 173 173
Welch Two Sample t-test
data: m and f
t = 4.7748, df = 15.725, p-value = 0.0002165
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
9.524862 24.775138
sample estimates:
mean of x mean of y
180.25 163.10
male: 41 42 42 44 42 42 42 46
female: 36 37 40 38 38.5 39 37 40 38 40
Welch Two Sample t-test
data: ms and fs
t = 5.9314, df = 14.194, p-value = 3.461e-05
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
2.731133 5.818867
sample estimates:
mean of x mean of y
42.625 38.350
Phone EMail F2F
Male 27 52 95
Female 35 48 65
Pearson's Chi-squared test
data: dta
X-squared = 4.7488, df = 2, p-value = 0.09307
Observed
Phone EMail F2F
Male 27 52 95
Female 35 48 65
Expected
Phone EMail F2F
Male 33.50311 54.03727 86.45963
Female 28.49689 45.96273 73.54037
Observed
Phone EMail F2F
Male 8.385093 16.14907 29.50311
Female 10.869565 14.90683 20.18634
Expected
Phone EMail F2F
Male 10.404691 16.78176 26.85082 54.03727
Female 8.849967 14.27414 22.83863 45.96273
19.254658 31.05590 49.68944 100.00000
V1 Phone EMail F2F
1 Male: Obs 15.51724 29.88506 54.5977
2 Female: Obs 23.64865 32.43243 43.91892
3 Expected 19.25466 31.0559 49.68944
\[ sd = \sqrt{\frac{\sum x^2 -\frac{(\sum{x})^2}{n}}{n-1}} =\sqrt{\frac{75-\frac{19^2}{5}}{4}} =0.84 \]
\[sd = \sqrt{\frac{\sum x^2 -\frac{(\sum{x})^2}{n}}{n-1}} = \sqrt{\frac{142 - \frac{24^2}{5}}{4}}=2.59\]
\[t = \frac{4.8-3.8}{\sqrt{\frac{0.84^2+2.59^2}{2}}}\]
AI Applications Learning via Service Robot Development
Dr. Jerry Tan,
Business Director
Lattel Robotics: A company promoting artificial intelligence-focused robotics education
Result | No Therapy | Group Therapy | Individual Therapy | Total |
---|---|---|---|---|
Sent back to Prison <1yr | 24 | 10 | 41 | 75 |
Back in Prison 1-10yrs | 25 | 13 | 32 | 70 |
Never back in prison | 12 | 20 | 9 | 41 |
Total | 61 | 43 | 82 | 186 |