# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize expected returns and risk to make it easier to compare the performance of multiple assets and portfolios.
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("HMC", "WMT", "TGT")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
asset_returns_tbl
## # A tibble: 180 × 3
## asset date returns
## <chr> <date> <dbl>
## 1 HMC 2013-01-31 0.0201
## 2 HMC 2013-02-28 -0.00665
## 3 HMC 2013-03-28 0.0263
## 4 HMC 2013-04-30 0.0440
## 5 HMC 2013-05-31 -0.0622
## 6 HMC 2013-06-28 -0.00318
## 7 HMC 2013-07-31 -0.00296
## 8 HMC 2013-08-30 -0.0328
## 9 HMC 2013-09-30 0.0640
## 10 HMC 2013-10-31 0.0466
## # … with 170 more rows
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "HMC" "TGT" "WMT"
# weights
weight <- c(0.20, 0.20, 0.60)
weight
## [1] 0.2 0.2 0.6
w_tbl <- tibble(symbols, weight)
w_tbl
## # A tibble: 3 × 2
## symbols weight
## <chr> <dbl>
## 1 HMC 0.2
## 2 TGT 0.2
## 3 WMT 0.6
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
reblance_on = "months")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date portfolio.returns
## <date> <dbl>
## 1 2013-01-31 0.0231
## 2 2013-02-28 0.0152
## 3 2013-03-28 0.0595
## 4 2013-04-30 0.0375
## 5 2013-05-31 -0.0330
## 6 2013-06-28 -0.00539
## 7 2013-07-31 0.0340
## 8 2013-08-30 -0.0660
## 9 2013-09-30 0.0221
## 10 2013-10-31 0.0340
## # … with 50 more rows
portfolio_sd_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = portfolio.returns,
performance_fun = table.Stats) %>%
select(Stdev) %>%
mutate(tq_sd = round(Stdev, 4))
portfolio_sd_tidyquant_builtin_percent
## # A tibble: 1 × 2
## Stdev tq_sd
## <dbl> <dbl>
## 1 0.0369 0.0369
# Mean of portfolio of returns
portfolio_mean_tidyquant_builtin_percent <- mean(portfolio_returns_tbl$portfolio.returns)
portfolio_mean_tidyquant_builtin_percent
## [1] 0.005570158
# Expected Returns vs Risk
sd_mean_tbl <- asset_returns_tbl %>%
group_by(asset) %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Mean = ArithmeticMean, Stdev) %>%
ungroup() %>%
# Add portfolio sd
add_row(tibble(asset = "Portfolio",
Mean = portfolio_mean_tidyquant_builtin_percent,
Stdev = portfolio_sd_tidyquant_builtin_percent$tq_sd))
sd_mean_tbl
## # A tibble: 4 × 3
## asset Mean Stdev
## <chr> <dbl> <dbl>
## 1 HMC 0 0.0532
## 2 TGT 0.0043 0.0609
## 3 WMT 0.0083 0.0471
## 4 Portfolio 0.00557 0.0369
sd_mean_tbl %>%
ggplot(aes(x = Stdev, y = Mean, color = asset)) +
geom_point() +
ggrepel::geom_text_repel(aes(label = asset))
How should you expect your portfolio to perform relative to its assets in the portfolio? Would you invest all your money in any of the individual stocks instead of the portfolio? Discuss both in terms of expected return and risk.
Based on expected return and risk of the chart, I would invest in the portfolio. Standard deviation would be the measure of volatile. A high standard deviation tends to have a wider range in returns. So depending on the return and risk of the buyer, a more consistent option would be the portfolio. If I was going to pick between the 3 stocks I would buy Walmart. The mean stock price is high but the standard deviation is still lower than the other 2 stocks. Walmart’s stock would have a wide range of returns but could potentially help make a better risk/reward option.