Cash ratio (Look Investopedia!)
(7-8 lines) The cash
ratio The cash ratio is a measurement of a company’s liquidity. It
specifically calculates the ratio of a company’s total cash and cash
equivalents to its current liabilities. The metric evaluates company’s
ability to repay its short-term debt with cash or near-cash resources,
such as easily marketable securities. This information is useful to
creditors when they decide how much money, if any, they would be willing
to loan a company.
The cash ratio is most commonly used as a measure of a company’s
liquidity. If the company is forced to pay all current liabilities
immediately, this metric shows the company’s ability to do so without
having to sell or liquidate other assets. The formula for a company’s
cash ratio is:
\[Cash Ratio: Cash + Cash Equivalents /
Current Liabilities\]
Data
The data originate from the web side Mendeley data and are a
side-product of the research published by @stanivsic2020empirical. The data involve
various primary and secondary data on the Serbian companies from the
2007-2015. They also include the data regarding the accontancy audits.
The near explanation of the data presents the above given paper..(5-7
lines)… The current ratio is expressed as the share of \[AOP 0068 / AOP 0442\]
Hypothesis
We expect that large corporates are more able to repay their
short-term debt with cash or near-cash resources, because they tend to
hold cash as a precautionary measure. By generating enough cash, a
business can meet its everyday business needs and avoid taking on debt.
That way, the business has more control over its activities. In a
situation in which a business has to take on debt to meet its expenses,
it is likely that its debtors will have a say in how the business is
run.
Our aim is to provide some graphical analysis explaining this fact.
The following assignment will provide more advanced statistics. (as it
is Your first step in data processing, I recommend You to use exactly
the same kind of the analysis as me, but with other indicatiors - next
time, we will extend our space for the other analysis
significantly).
Data processing and results
udaje <<- read.csv2("udaje.csv") # import of the .csv data to data.frame
# udaje become global - see operator <<-
######### cleaning data - identification, where are the data missing
library(Amelia)
missmap(udaje)

udaje <<- na.omit(udaje)
missmap(udaje)

For continuing the analysis, the database needs even more
reconstruction. First of all, we need exclude variables we do not need
for achieving our goals. Inspecting the paper of @stanivsic2020empirical we decided to use just
“AOP71”, “AOP68”,“AOP442” columns
selected.cols <<- c("AOP71", "AOP68", "AOP442") #CHANGE
udaje.tmp <<- udaje[,selected.cols]
Error in `[.data.frame`(udaje, , selected.cols) :
undefined columns selected
udaje <<- data.frame(udaje.csv)
udaje.csv$cash.ratio <- udaje.csv$AOP68 / udaje.csv$AOP442 #CHANGE
Error in `$<-.data.frame`(`*tmp*`, cash.ratio, value = numeric(0)) :
replacement has 0 rows, data has 9549
# library
#library(ggplot2) # highly popular library for plotting, however, I have not used it
# see https://r-graph-gallery.com/ to choose th3e plot and find an appropriate code
boxplot(udaje.tmp$cash.ratio[udaje.tmp$total.assets >= quart3], udaje.csv$casht.ratio[udaje2.csv$total.assets <= quart3],
names = c("Large firms", "Small firms"), # CHANGE
ylab = "Cash.ratio",
main = "Figure")
We are not able to see, whether the boxex overlay, because of the
oulier data. That is, why I decided to change the vertical axes scale in
the graph as follows
boxplot(udaje.tmp$cash.ratio[udaje.tmp$total.assets >= quart3], udaje.tmp$cash.ratio[udaje.tmp$total.assets <= quart3],
names = c("Large firms", "Small firms"), # CHANGE
ylab = "Cash.ratio",
main = "Figure",
ylim = c(0,10))
Now, we clarly see that boxes (rectanles) overlay - ther is no
difference between large and small firms if speaking about cash
ratio.
LS0tCnRpdGxlOiAiRG9lcyB0aGUgc2l6ZSBtYXR0ZXI/IC0gY29tcGFyaXNvbiBvZiB0aGUgQ2FzaCByYXRpbyBvZiB0aGUgbGFyZ2UgYW5kIHNtYWxsCiAgc2VpemVkIGZpcm1zIgphdXRob3I6ICJBcmFua2EgQm9yb3MiCm91dHB1dDoKICBodG1sX25vdGVib29rOiBkZWZhdWx0CiAgcGRmX2RvY3VtZW50OiBkZWZhdWx0Ci0tLQoKCmBgYHtyIGwxLCBlY2hvPUZBTFNFfQprbml0cjo6b3B0c19jaHVuayRzZXQod2FybmluZyA9IEZBTFNFLCBtZXNzYWdlID0gRkFMU0UpCgpgYGAKCiMjIENhc2ggcmF0aW8gIChMb29rIEludmVzdG9wZWRpYSEpCgoKKDctOCBsaW5lcykKIFRoZSBbY2FzaCByYXRpb10oaHR0cHM6Ly93d3cuaW52ZXN0b3BlZGlhLmNvbS90ZXJtcy9jL2Nhc2gtcmF0aW8uYXNwKSBUaGUgY2FzaCByYXRpbyBpcyBhIG1lYXN1cmVtZW50IG9mIGEgY29tcGFueSdzIGxpcXVpZGl0eS4gSXQgc3BlY2lmaWNhbGx5IGNhbGN1bGF0ZXMgdGhlIHJhdGlvIG9mIGEgY29tcGFueSdzIHRvdGFsIGNhc2ggYW5kIGNhc2ggZXF1aXZhbGVudHMgdG8gaXRzIGN1cnJlbnQgbGlhYmlsaXRpZXMuIFRoZSBtZXRyaWMgZXZhbHVhdGVzIGNvbXBhbnkncyBhYmlsaXR5IHRvIHJlcGF5IGl0cyBzaG9ydC10ZXJtIGRlYnQgd2l0aCBjYXNoIG9yIG5lYXItY2FzaCByZXNvdXJjZXMsIHN1Y2ggYXMgZWFzaWx5IG1hcmtldGFibGUgc2VjdXJpdGllcy4gVGhpcyBpbmZvcm1hdGlvbiBpcyB1c2VmdWwgdG8gY3JlZGl0b3JzIHdoZW4gdGhleSBkZWNpZGUgaG93IG11Y2ggbW9uZXksIGlmIGFueSwgdGhleSB3b3VsZCBiZSB3aWxsaW5nIHRvIGxvYW4gYSBjb21wYW55LgoKVGhlIGNhc2ggcmF0aW8gaXMgbW9zdCBjb21tb25seSB1c2VkIGFzIGEgbWVhc3VyZSBvZiBhIGNvbXBhbnkncyBsaXF1aWRpdHkuIElmIHRoZSBjb21wYW55IGlzIGZvcmNlZCB0byBwYXkgYWxsIGN1cnJlbnQgbGlhYmlsaXRpZXMgaW1tZWRpYXRlbHksIHRoaXMgbWV0cmljIHNob3dzIHRoZSBjb21wYW55J3MgYWJpbGl0eSB0byBkbyBzbyB3aXRob3V0IGhhdmluZyB0byBzZWxsIG9yIGxpcXVpZGF0ZSBvdGhlciBhc3NldHMuIFRoZSBmb3JtdWxhIGZvciBhIGNvbXBhbnkncyBjYXNoIHJhdGlvIGlzOgoKJCRDYXNoIFJhdGlvOiBDYXNoICsgQ2FzaCBFcXVpdmFsZW50cyAvIEN1cnJlbnQgTGlhYmlsaXRpZXMkJAoKCiMjIERhdGEKClRoZSBkYXRhIG9yaWdpbmF0ZSBmcm9tIHRoZSB3ZWIgc2lkZSBbTWVuZGVsZXkgZGF0YV0oaHR0cHM6Ly9kYXRhLm1lbmRlbGV5LmNvbS8pIGFuZCBhcmUgYSBzaWRlLXByb2R1Y3Qgb2YgdGhlIHJlc2VhcmNoIHB1Ymxpc2hlZCBieSBAc3Rhbml2c2ljMjAyMGVtcGlyaWNhbC4KVGhlIGRhdGEgaW52b2x2ZSB2YXJpb3VzIHByaW1hcnkgYW5kIHNlY29uZGFyeSBkYXRhIG9uIHRoZSBTZXJiaWFuIGNvbXBhbmllcyBmcm9tIHRoZSAyMDA3LTIwMTUuIFRoZXkgYWxzbyBpbmNsdWRlIHRoZSBkYXRhIHJlZ2FyZGluZyB0aGUgYWNjb250YW5jeSBhdWRpdHMuIFRoZSBuZWFyIGV4cGxhbmF0aW9uIG9mIHRoZSBkYXRhIHByZXNlbnRzIHRoZSBhYm92ZSBnaXZlbiBwYXBlci4uKDUtNyBsaW5lcykuLi4KVGhlIGN1cnJlbnQgcmF0aW8gaXMgZXhwcmVzc2VkIGFzIHRoZSBzaGFyZSBvZiAkJEFPUCAwMDY4IC8gQU9QIDA0NDIkJAoKIyMgSHlwb3RoZXNpcwoKV2UgZXhwZWN0IHRoYXQgbGFyZ2UgY29ycG9yYXRlcyBhcmUgbW9yZSBhYmxlIHRvIHJlcGF5IHRoZWlyIHNob3J0LXRlcm0gZGVidCB3aXRoIGNhc2ggb3IgbmVhci1jYXNoIHJlc291cmNlcywgYmVjYXVzZSB0aGV5IHRlbmQgdG8gaG9sZCBjYXNoIGFzIGEgcHJlY2F1dGlvbmFyeSBtZWFzdXJlLgpCeSBnZW5lcmF0aW5nIGVub3VnaCBjYXNoLCBhIGJ1c2luZXNzIGNhbiBtZWV0IGl0cyBldmVyeWRheSBidXNpbmVzcyBuZWVkcyBhbmQgYXZvaWQgdGFraW5nIG9uIGRlYnQuIFRoYXQgd2F5LCB0aGUgYnVzaW5lc3MgaGFzIG1vcmUgY29udHJvbCBvdmVyIGl0cyBhY3Rpdml0aWVzLiBJbiBhIHNpdHVhdGlvbiBpbiB3aGljaCBhIGJ1c2luZXNzIGhhcyB0byB0YWtlIG9uIGRlYnQgdG8gbWVldCBpdHMgZXhwZW5zZXMsIGl0IGlzIGxpa2VseSB0aGF0IGl0cyBkZWJ0b3JzIHdpbGwgaGF2ZSBhIHNheSBpbiBob3cgdGhlIGJ1c2luZXNzIGlzIHJ1bi4KCk91ciBhaW0gaXMgdG8gcHJvdmlkZSBzb21lIGdyYXBoaWNhbCBhbmFseXNpcyBleHBsYWluaW5nIHRoaXMgZmFjdC4gVGhlIGZvbGxvd2luZyBhc3NpZ25tZW50ICB3aWxsIHByb3ZpZGUgbW9yZSBhZHZhbmNlZCBzdGF0aXN0aWNzLiAoYXMgaXQgaXMgWW91ciBmaXJzdCBzdGVwIGluIGRhdGEgcHJvY2Vzc2luZywgSSByZWNvbW1lbmQgWW91IHRvIHVzZSBleGFjdGx5IHRoZSBzYW1lIGtpbmQgb2YgdGhlIGFuYWx5c2lzIGFzIG1lLCBidXQgd2l0aCBvdGhlciBpbmRpY2F0aW9ycyAtIG5leHQgdGltZSwgd2Ugd2lsbCBleHRlbmQgb3VyIHNwYWNlIGZvciB0aGUgb3RoZXIgYW5hbHlzaXMgc2lnbmlmaWNhbnRseSkuCgojIyBEYXRhIHByb2Nlc3NpbmcgYW5kIHJlc3VsdHMKCmBgYHtyIERhdGFfcmVhZGluZ19hbmRfY2xlYW5pbmd9CnVkYWplIDw8LSByZWFkLmNzdjIoInVkYWplLmNzdiIpICAgICAgIyBpbXBvcnQgb2YgdGhlIC5jc3YgZGF0YSB0byBkYXRhLmZyYW1lICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAjIHVkYWplIGJlY29tZSBnbG9iYWwgLSBzZWUgb3BlcmF0b3IgPDwtCiMjIyMjIyMjIyAgIGNsZWFuaW5nIGRhdGEgLSBpZGVudGlmaWNhdGlvbiwgd2hlcmUgYXJlIHRoZSBkYXRhIG1pc3NpbmcgCmxpYnJhcnkoQW1lbGlhKQptaXNzbWFwKHVkYWplKSAKCmBgYAoKYGBge3IgZWxpbWluaXRpbmdfTkFfcm93c30KCnVkYWplIDw8LSBuYS5vbWl0KHVkYWplKQptaXNzbWFwKHVkYWplKQpgYGAKCkZvciBjb250aW51aW5nIHRoZSBhbmFseXNpcywgdGhlIGRhdGFiYXNlIG5lZWRzIGV2ZW4gbW9yZSByZWNvbnN0cnVjdGlvbi4gRmlyc3Qgb2YgYWxsLCB3ZSBuZWVkIGV4Y2x1ZGUgdmFyaWFibGVzIHdlIGRvIG5vdCBuZWVkIGZvciBhY2hpZXZpbmcgb3VyIGdvYWxzLiBJbnNwZWN0aW5nIHRoZSBwYXBlciBvZiBAc3Rhbml2c2ljMjAyMGVtcGlyaWNhbCB3ZSBkZWNpZGVkIHRvIHVzZSBqdXN0ICJBT1A3MSIsICJBT1A2OCIsIkFPUDQ0MiIgY29sdW1ucwoKCmBgYHtyIHZhcmlhYmxlX3NlbGVjdGlvbn0Kc2VsZWN0ZWQuY29scyA8PC0gYygiQU9QNzEiLCAiQU9QNjgiLCAiQU9QNDQyIikgICAgI0NIQU5HRQp1ZGFqZS50bXAgPDwtIHVkYWplWyxzZWxlY3RlZC5jb2xzXQojIHN1YnN0aXR1dGlvbiBvZiB0eHQgdmFyaWFibGVzIHRvIG51bWVyaWMgb25lcyAgKGNoYW5nZSBub3RoaW5nISEhISkKIyByYXRoZXIgcmVkdW5kYW50IGNvbW1hbmRzLCBidXQgYXZvaWRpbmcgcHJvYmxlbXMgb2YgY29uZnVzaW5nIGRhdGEgdHlwZXMgKG51bWVyaWMgdnMgdGV4dHMpCnVkYWplLmNzdiA8LSBhcHBseSh1ZGFqZS5jc3YsIGMoMSwyKSwgICMgSSBkZWZpbmVkIGZ1bmN0aW9uIHdpdGhpbiBhcHBseSAgLSBjb252ZXJzaW9uIG9mIGRhdGEgZnJvbSB0ZXh0IHRvIG51bWVyaWMgdHlwZXMKICAgICAgICAgICAgICAgICAgICBmdW5jdGlvbih4KSBhcy5udW1lcmljKGFzLmNoYXJhY3Rlcih4KSkpCgpgYGAKCgoKYGBge3IgYWFhfQp1ZGFqZSA8PC0gZGF0YS5mcmFtZSh1ZGFqZS5jc3YpCnVkYWplLmNzdiRjYXNoLnJhdGlvIDwtIHVkYWplLmNzdiRBT1A2OCAvIHVkYWplLmNzdiRBT1A0NDIgICAgICAgICNDSEFOR0UKdWRhamUuY3N2JHRvdGFsLmFzc2V0cyA8LSB1ZGFqZS5jc3YkQU9QNzEgICAgICAgICAgICAgICAgICAgICAgICAgICAjIENIQU5HRQoKIyAxc3QgYW5kIDNyZCBxdWFydGxlIG9mIHRvdGFsIGFzc2V0cwojIGlkZW50aWZpY2F0aW9uIG9mIHRoZSAyNXRoIHBlcmNlbnRpbCAtIDI1IHBlcmNlbnQgb2YgdGhlIGZpcm1zIGhhdmUgIGxlc3MgdG90YWwuYXNzZXRzIHRoZW4gcXVhcnQxCnF1YXJ0MSA8LSBxdWFudGlsZSh1ZGFqZS5jc3YkdG90YWwuYXNzZXRzLCBwcm9icyA9IDAuMjUpICAgIApxdWFydDMgPC0gcXVhbnRpbGUodWRhamUuY3N2JHRvdGFsLmFzc2V0cywgcHJvYnMgPSAwLjc1KQoKYGBgCgoKCgpgYGB7ciBib3hwbG90c30KIyBsaWJyYXJ5CiNsaWJyYXJ5KGdncGxvdDIpICAgICAgIyBoaWdobHkgcG9wdWxhciBsaWJyYXJ5IGZvciBwbG90dGluZywgaG93ZXZlciwgSSBoYXZlIG5vdCB1c2VkIGl0CiAgICAgICAgICAgICAgICAgICAgICAjIHNlZSBodHRwczovL3ItZ3JhcGgtZ2FsbGVyeS5jb20vIHRvIGNob29zZSB0aDNlIHBsb3QgYW5kIGZpbmQgYW4gYXBwcm9wcmlhdGUgY29kZQoKIAoKYm94cGxvdCh1ZGFqZS50bXAkY2FzaC5yYXRpb1t1ZGFqZS50bXAkdG90YWwuYXNzZXRzID49IHF1YXJ0M10sIHVkYWplLmNzdiRjYXNodC5yYXRpb1t1ZGFqZTIuY3N2JHRvdGFsLmFzc2V0cyA8PSBxdWFydDNdLCAKICAgICAgICAgbmFtZXMgPSBjKCJMYXJnZSBmaXJtcyIsICJTbWFsbCBmaXJtcyIpLCAjIENIQU5HRQogICAgICAgICB5bGFiID0gIkNhc2gucmF0aW8iLCAKICAgICAgICAgbWFpbiA9ICJGaWd1cmUiKQoKYGBgCgpXZSBhcmUgbm90IGFibGUgdG8gc2VlLCB3aGV0aGVyIHRoZSBib3hleCBvdmVybGF5LCBiZWNhdXNlIG9mIHRoZSBvdWxpZXIgZGF0YS4gVGhhdCBpcywgd2h5IEkgZGVjaWRlZCB0byBjaGFuZ2UgdGhlIHZlcnRpY2FsIGF4ZXMgc2NhbGUgaW4gdGhlIGdyYXBoIGFzIGZvbGxvd3MKCgoKYGBge3IgYm94cGxvdHMyfQoKYm94cGxvdCh1ZGFqZS50bXAkY2FzaC5yYXRpb1t1ZGFqZS50bXAkdG90YWwuYXNzZXRzID49IHF1YXJ0M10sIHVkYWplLnRtcCRjYXNoLnJhdGlvW3VkYWplLnRtcCR0b3RhbC5hc3NldHMgPD0gcXVhcnQzXSwgCiAgICAgICAgIG5hbWVzID0gYygiTGFyZ2UgZmlybXMiLCAiU21hbGwgZmlybXMiKSwgIyBDSEFOR0UKICAgICAgICAgeWxhYiA9ICJDYXNoLnJhdGlvIiwgCiAgICAgICAgIG1haW4gPSAiRmlndXJlIiwKICAgICAgICB5bGltID0gYygwLDEwKSkKCmBgYAoKTm93LCB3ZSBjbGFybHkgc2VlIHRoYXQgYm94ZXMgKHJlY3Rhbmxlcykgb3ZlcmxheSAtIHRoZXIgaXMgbm8gZGlmZmVyZW5jZSBiZXR3ZWVuIGxhcmdlIGFuZCBzbWFsbCBmaXJtcyBpZiBzcGVha2luZyBhYm91dCBjYXNoIHJhdGlvLgoKCg==