Cash ratio
The cash
ratio is a measurement of a company’s liquidity. It specifically
calculates the ratio of a company’s total cash and cash equivalents to
its current liabilities. The metric evaluates company’s ability to repay
its short-term debt with cash or near-cash resources, such as easily
marketable securities. This information is useful to creditors when they
decide how much money, if any, they would be willing to loan a
company.
The formula for a company’s cash ratio is:
Cash Ratio: Cash + Cash Equivalents / Current Liabilities
For more information, see Debt
Ratio.
Data
A database is an organized collection of structured information, or
data, typically stored electronically in a computer system. A database
is usually controlled by a database management system
The cash ratio is expressed as the share of AOP 0068 / AOP 0442
accounts.
Hypothesis
We expect that large companies have better current ratio because of
providing more secure trades…
Our aim is to provide some graphical analysis explaining this fact.
The following assignment will provide more advanced statistics. ## Data
processing and results
udaje <<- read.csv2("udaje.csv") # import of the .csv data to data.frame
# udaje become global - see operator <<-
######### cleaning data - identification, where are the data missing
library(Amelia)
missmap(udaje)
udaje <<- na.omit(udaje)
missmap(udaje)
For continuing the analysis, the database needs even more
reconstruction. First of all, we need exclude variables we do not need
for achieving our goals. Inspecting the paper of @stanivsic2020empirical we decided to use just
“AOP71”, “AOP43”,“AOP442” columns
selected.cols <- c("AOP71","AOP68","AOP442") #CHANGE
udaje <<- udaje[,selected.cols] # extracting just columns defined in the previous line
# substitution of txt variables to numeric ones (change nothing!!!!)
# rather redundant commands, but avoiding problems of confusing data types (numeric vs texts)
udaje.tmp <- apply(udaje.tmp, c(1,2), # I defined function within apply - conversion of data from text to numeric types
function(x) as.numeric(as.character(x)))
udaje <<- data.frame(udaje)
udaje$cash.ratio <- udaje$AOP68 / udaje$AOP442 #CHANGE
udaje$total.assets <- udaje$AOP71 # CHANGE
# 1st and 3rd quartle of total assets
# identification of the 25th percentil - 25 percent of the firms have less total.assets then quart1
quart1 <- quantile(udaje$total.assets, probs = 0.25)
quart3 <- quantile(udaje$total.assets, probs = 0.75)

We are not able to see, whether the boxex overlay, because of the
oulier data. That is, why I decided to change the vertical axes scale in
the graph as follows

Now, we clarly see that boxes (rectanles) overlay - ther is no
difference between large and small firms if speaking about current
ratio.
LS0tCnRpdGxlOiAiRG9lcyB0aGUgc2l6ZSBtYXR0ZXI/IC0gY29tcGFyaXNvbiBvZiB0aGUgRGVidCByYXRpbyBvZiB0aGUgbGFyZ2UgYW5kIHNtYWxsCiAgc2l6ZWQgZmlybXMiCmF1dGhvcjogIkTDs3JhIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCgoKYGBge3IgbDEsIGVjaG89RkFMU0V9CiNrbml0cjo6b3B0c19jaHVuayRzZXQoZWNobz1GQUxTRSkKYmlibGlvZ3JhcGh5OiAiM3JkIHdlZWsvYmlibGlvL3JlZmVyZW5jZXMuYmliIgotLS0KCgoKYGBgCgojIyBDYXNoIHJhdGlvCgoKVGhlIFtjYXNoIHJhdGlvXShodHRwczovL3d3dy5pbnZlc3RvcGVkaWEuY29tL3Rlcm1zL2MvY2FzaC1yYXRpby5hc3ApIGlzIGEgbWVhc3VyZW1lbnQgb2YgYSBjb21wYW55J3MgbGlxdWlkaXR5LiBJdApzcGVjaWZpY2FsbHkgY2FsY3VsYXRlcyB0aGUgcmF0aW8gb2YgYSBjb21wYW55J3MgdG90YWwgY2FzaAphbmQgY2FzaCBlcXVpdmFsZW50cyB0byBpdHMgY3VycmVudCBsaWFiaWxpdGllcy4gVGhlIG1ldHJpYwpldmFsdWF0ZXMgY29tcGFueSdzIGFiaWxpdHkgdG8gcmVwYXkgaXRzIHNob3J0LXRlcm0gZGVidCB3aXRoCmNhc2ggb3IgbmVhci1jYXNoIHJlc291cmNlcywgc3VjaCBhcyBlYXNpbHkgbWFya2V0YWJsZQpzZWN1cml0aWVzLiBUaGlzIGluZm9ybWF0aW9uIGlzIHVzZWZ1bCB0byBjcmVkaXRvcnMgd2hlbiB0aGV5CmRlY2lkZSBob3cgbXVjaCBtb25leSwgaWYgYW55LCB0aGV5IHdvdWxkIGJlIHdpbGxpbmcgdG8gbG9hbiBhCmNvbXBhbnkuCgpUaGUgZm9ybXVsYSBmb3IgYSBjb21wYW55J3MgY2FzaCByYXRpbyBpczoKYENhc2ggUmF0aW86IENhc2ggKyBDYXNoIEVxdWl2YWxlbnRzIC8gQ3VycmVudCBMaWFiaWxpdGllc2AKCkZvciBtb3JlIGluZm9ybWF0aW9uLCBzZWUgW0RlYnQgUmF0aW9dKGh0dHBzOi8vZGViaXRvb3IuY29tL2RpY3Rpb25hcnkvZGVidC1yYXRpbyM6XH46dGV4dD1UbyUyMGZpbmQlMjB0aGUlMjBkZWJ0JTIwcmF0aW8sJTJDJTIwZ29vZHdpbGwlMkMlMjAtLWV0Yy4pLiAKCgoKIyMgRGF0YQoKQSBkYXRhYmFzZSBpcyBhbiBvcmdhbml6ZWQgY29sbGVjdGlvbiBvZiBzdHJ1Y3R1cmVkIGluZm9ybWF0aW9uLCBvciBkYXRhLCB0eXBpY2FsbHkgc3RvcmVkIGVsZWN0cm9uaWNhbGx5IGluIGEgY29tcHV0ZXIgc3lzdGVtLiBBIGRhdGFiYXNlIGlzIHVzdWFsbHkgY29udHJvbGxlZCBieSBhIGRhdGFiYXNlIG1hbmFnZW1lbnQgc3lzdGVtCgpUaGUgY2FzaCByYXRpbyBpcyBleHByZXNzZWQgYXMgdGhlIHNoYXJlIG9mIEFPUCAwMDY4IC8gQU9QIDA0NDIgIGFjY291bnRzLgoKIyMgSHlwb3RoZXNpcwoKV2UgZXhwZWN0IHRoYXQgbGFyZ2UgY29tcGFuaWVzIGhhdmUgYmV0dGVyIGN1cnJlbnQgcmF0aW8gYmVjYXVzZSBvZiBwcm92aWRpbmcgbW9yZSBzZWN1cmUgdHJhZGVzLi4uCgpPdXIgYWltIGlzIHRvIHByb3ZpZGUgc29tZSBncmFwaGljYWwgYW5hbHlzaXMgZXhwbGFpbmluZyB0aGlzIGZhY3QuIFRoZSBmb2xsb3dpbmcgYXNzaWdubWVudCAgd2lsbCBwcm92aWRlIG1vcmUgYWR2YW5jZWQgc3RhdGlzdGljcy4gCiMjIERhdGEgcHJvY2Vzc2luZyBhbmQgcmVzdWx0cwoKYGBge3IgRGF0YV9yZWFkaW5nX2FuZF9jbGVhbmluZ30KdWRhamUgPDwtIHJlYWQuY3N2MigidWRhamUuY3N2IikgICAgICAjIGltcG9ydCBvZiB0aGUgLmNzdiBkYXRhIHRvIGRhdGEuZnJhbWUgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICMgdWRhamUgYmVjb21lIGdsb2JhbCAtIHNlZSBvcGVyYXRvciA8PC0KIyMjIyMjIyMjICAgY2xlYW5pbmcgZGF0YSAtIGlkZW50aWZpY2F0aW9uLCB3aGVyZSBhcmUgdGhlIGRhdGEgbWlzc2luZyAKbGlicmFyeShBbWVsaWEpCm1pc3NtYXAodWRhamUpIAoKYGBgCgpgYGB7ciBlbGltaW5pdGluZ19OQV9yb3dzfQoKdWRhamUgPDwtIG5hLm9taXQodWRhamUpCm1pc3NtYXAodWRhamUpCmBgYAoKRm9yIGNvbnRpbnVpbmcgdGhlIGFuYWx5c2lzLCB0aGUgZGF0YWJhc2UgbmVlZHMgZXZlbiBtb3JlIHJlY29uc3RydWN0aW9uLiBGaXJzdCBvZiBhbGwsIHdlIG5lZWQgZXhjbHVkZSB2YXJpYWJsZXMgd2UgZG8gbm90IG5lZWQgZm9yIGFjaGlldmluZyBvdXIgZ29hbHMuIEluc3BlY3RpbmcgdGhlIHBhcGVyIG9mIEBzdGFuaXZzaWMyMDIwZW1waXJpY2FsIHdlIGRlY2lkZWQgdG8gdXNlIGp1c3QgIkFPUDcxIiwgIkFPUDQzIiwiQU9QNDQyIiBjb2x1bW5zCgoKYGBge3IgdmFyaWFibGVfc2VsZWN0aW9ufQpzZWxlY3RlZC5jb2xzIDwtIGMoIkFPUDcxIiwiQU9QNjgiLCJBT1A0NDIiKSAgICAjQ0hBTkdFCnVkYWplIDw8LSB1ZGFqZVssc2VsZWN0ZWQuY29sc10gICMgZXh0cmFjdGluZyBqdXN0IGNvbHVtbnMgZGVmaW5lZCBpbiB0aGUgcHJldmlvdXMgbGluZQojIHN1YnN0aXR1dGlvbiBvZiB0eHQgdmFyaWFibGVzIHRvIG51bWVyaWMgb25lcyAgKGNoYW5nZSBub3RoaW5nISEhISkKIyByYXRoZXIgcmVkdW5kYW50IGNvbW1hbmRzLCBidXQgYXZvaWRpbmcgcHJvYmxlbXMgb2YgY29uZnVzaW5nIGRhdGEgdHlwZXMgKG51bWVyaWMgdnMgdGV4dHMpCnVkYWplLnRtcCA8LSBhcHBseSh1ZGFqZS50bXAsIGMoMSwyKSwgICMgSSBkZWZpbmVkIGZ1bmN0aW9uIHdpdGhpbiBhcHBseSAgLSBjb252ZXJzaW9uIG9mIGRhdGEgZnJvbSB0ZXh0IHRvIG51bWVyaWMgdHlwZXMKICAgICAgICAgICAgICAgICAgICBmdW5jdGlvbih4KSBhcy5udW1lcmljKGFzLmNoYXJhY3Rlcih4KSkpCgpgYGAKCgoKYGBge3IgYWFhfQp1ZGFqZSA8PC0gZGF0YS5mcmFtZSh1ZGFqZSkKdWRhamUkY2FzaC5yYXRpbyA8LSB1ZGFqZSRBT1A2OCAvIHVkYWplJEFPUDQ0MiAgICAgICAgI0NIQU5HRQp1ZGFqZSR0b3RhbC5hc3NldHMgPC0gdWRhamUkQU9QNzEgICAgICAgICAgICAgICAgICAgICAgICAgICAjIENIQU5HRQoKIyAxc3QgYW5kIDNyZCBxdWFydGxlIG9mIHRvdGFsIGFzc2V0cwojIGlkZW50aWZpY2F0aW9uIG9mIHRoZSAyNXRoIHBlcmNlbnRpbCAtIDI1IHBlcmNlbnQgb2YgdGhlIGZpcm1zIGhhdmUgIGxlc3MgdG90YWwuYXNzZXRzIHRoZW4gcXVhcnQxCnF1YXJ0MSA8LSBxdWFudGlsZSh1ZGFqZSR0b3RhbC5hc3NldHMsIHByb2JzID0gMC4yNSkgICAgCnF1YXJ0MyA8LSBxdWFudGlsZSh1ZGFqZSR0b3RhbC5hc3NldHMsIHByb2JzID0gMC43NSkKCmBgYAoKCgoKCmBgYHtyIGJveHBsb3RzfQojIGxpYnJhcnkKI2xpYnJhcnkoZ2dwbG90MikgICAgICAjIGhpZ2hseSBwb3B1bGFyIGxpYnJhcnkgZm9yIHBsb3R0aW5nLCBob3dldmVyLCBJIGhhdmUgbm90IHVzZWQgaXQKICAgICAgICAgICAgICAgICAgICAgICMgc2VlIGh0dHBzOi8vci1ncmFwaC1nYWxsZXJ5LmNvbS8gdG8gY2hvb3NlIHRoM2UgcGxvdCBhbmQgZmluZCBhbiBhcHByb3ByaWF0ZSBjb2RlCgogCgpib3hwbG90KHVkYWplJGNhc2gucmF0aW9bdWRhamUkdG90YWwuYXNzZXRzID49IHF1YXJ0M10sIHVkYWplJGNhc2gucmF0aW9bdWRhamUkdG90YWwuYXNzZXRzIDw9IHF1YXJ0M10sIAogICAgICAgICBuYW1lcyA9IGMoIkxhcmdlIGZpcm1zIiwgIlNtYWxsIGZpcm1zIiksICMgQ0hBTkdFCiAgICAgICAgIHlsYWIgPSAiQ3VycmVudC5yYXRpbyIsIAogICAgICAgICBtYWluID0gIkZpZ3VyZSIsCiAgICAgICAgIHlsaW0gPSBjKDAsMjApKQoKYGBgCgpXZSBhcmUgbm90IGFibGUgdG8gc2VlLCB3aGV0aGVyIHRoZSBib3hleCBvdmVybGF5LCBiZWNhdXNlIG9mIHRoZSBvdWxpZXIgZGF0YS4gVGhhdCBpcywgd2h5IEkgZGVjaWRlZCB0byBjaGFuZ2UgdGhlIHZlcnRpY2FsIGF4ZXMgc2NhbGUgaW4gdGhlIGdyYXBoIGFzIGZvbGxvd3MKCgoKYGBge3IgYm94cGxvdHMyfQoKYm94cGxvdCh1ZGFqZSRjYXNoLnJhdGlvW3VkYWplJHRvdGFsLmFzc2V0cyA+PSBxdWFydDNdLCB1ZGFqZSRjYXNoLnJhdGlvW3VkYWplJHRvdGFsLmFzc2V0cyA8PSBxdWFydDNdLCAKICAgICAgICAgbmFtZXMgPSBjKCJMYXJnZSBmaXJtcyIsICJTbWFsbCBmaXJtcyIpLCAjIENIQU5HRQogICAgICAgICB5bGFiID0gIkN1cnJlbnQucmF0aW8iLCAKICAgICAgICAgbWFpbiA9ICJGaWd1cmUiLAogICAgICAgIHlsaW0gPSBjKDAsMTApKQoKYGBgCgpOb3csIHdlIGNsYXJseSBzZWUgdGhhdCBib3hlcyAocmVjdGFubGVzKSBvdmVybGF5IC0gdGhlciBpcyBubyBkaWZmZXJlbmNlIGJldHdlZW4gbGFyZ2UgYW5kIHNtYWxsIGZpcm1zIGlmIHNwZWFraW5nIGFib3V0IGN1cnJlbnQgcmF0aW8uCg==