library(tidyverse)
library(openintro)
Exercise 1
What does a streak length of 1 mean,i.e how many hits and misses in a
streak of 1? What about a streak length of 0? Answer: A streak lenth of
1 means the player hits the basket once and that of 0 means no hits.
kobe_streak <- calc_streak(kobe_basket$shot)
ggplot(data = kobe_streak, aes(x = length)) + geom_bar()

Exercise 2
The distribution of Kobe’s streak length is twisted to get shooting
streak. The typical streak length of 0 occours approximately by count 40
and that of 1 is with the count near 25. The longest shooting streak
length of 4 was found at count 1.
Exercise 3
set.seed(3847) # make sure to change the seed
coin_outcomes <- c("heads", "tails")
sample(coin_outcomes, size = 1, replace = TRUE)
## [1] "heads"
sim_fair_coin <- sample(coin_outcomes, size = 100, replace = TRUE)
sim_fair_coin
## [1] "tails" "heads" "tails" "tails" "tails" "tails" "heads" "tails" "heads"
## [10] "heads" "tails" "heads" "tails" "tails" "heads" "heads" "heads" "heads"
## [19] "tails" "heads" "heads" "heads" "heads" "tails" "heads" "tails" "heads"
## [28] "tails" "heads" "heads" "heads" "heads" "tails" "heads" "tails" "heads"
## [37] "heads" "tails" "heads" "heads" "heads" "tails" "heads" "heads" "tails"
## [46] "tails" "heads" "tails" "heads" "heads" "tails" "heads" "tails" "heads"
## [55] "heads" "tails" "heads" "tails" "tails" "heads" "tails" "heads" "tails"
## [64] "tails" "tails" "tails" "tails" "heads" "tails" "heads" "tails" "tails"
## [73] "heads" "heads" "tails" "heads" "heads" "heads" "tails" "tails" "tails"
## [82] "heads" "heads" "tails" "tails" "heads" "tails" "heads" "tails" "tails"
## [91] "tails" "tails" "tails" "heads" "heads" "tails" "heads" "heads" "heads"
## [100] "tails"
## sim_fair_coin
## heads tails
## 52 48
sim_unfair_coin <- sample(coin_outcomes, size = 100, replace = TRUE, prob = c(0.2, 0.8))
table(sim_unfair_coin)
## sim_unfair_coin
## heads tails
## 18 82
Exercise 4
shot_outcomes <-c("H", "M")
sim_basket <- sample(shot_outcomes, size = 133, replace = TRUE, prob = c(0.45, 0.55))
Exercise 5
set.seed(1975)
shot_outcomes <- c("H", "M")
sim_basket <- sample(shot_outcomes, size = 133, replace = TRUE, prob = c(0.45,0.55))
sim_streak <-calc_streak(sim_basket)
Exercise 6
library(ggplot2)
sim_basket <- sample(shot_outcomes, size = 133, replace = TRUE, prob = c(0.45,0.55))
sim_streak <-calc_streak(sim_basket)
ggplot(data =sim_streak, aes(x = length)) + geom_bar()

summary(calc_streak(sim_basket))
## length
## Min. :0.0000
## 1st Qu.:0.0000
## Median :0.0000
## Mean :0.5952
## 3rd Qu.:1.0000
## Max. :5.0000
Exercise 7
I already expected the outcomes of distribution is slightly different
from above question because data frames are not the same even though
shooting percentage is identical.
Exercise 8
The distributions look very similar and right skewed.. Therefore,
there is no evidence that the hot hand model fits Kobe’s shooting
patterns.
LS0tCnRpdGxlOiAiTGFiXzNfUHJvYmFiaWxpdHkiCmF1dGhvcjogIkx3aW5fTmFuZGFyX1Nod2UiCmRhdGU6ICJgciBTeXMuRGF0ZSgpYCIKb3V0cHV0OgogIG9wZW5pbnRybzo6bGFiX3JlcG9ydDogZGVmYXVsdAogIG9wZW5pbnRybzo6bGFiM19yZXBvcnQ6IGRlZmF1bHQKLS0tCgpgYGB7ciBsb2FkLXBhY2thZ2VzLCBtZXNzYWdlPUZBTFNFfQpsaWJyYXJ5KHRpZHl2ZXJzZSkKbGlicmFyeShvcGVuaW50cm8pCmBgYAoKIyMjIEV4ZXJjaXNlIDEKCldoYXQgZG9lcyBhIHN0cmVhayBsZW5ndGggb2YgMSBtZWFuLGkuZSBob3cgbWFueSBoaXRzIGFuZCBtaXNzZXMgaW4gYSBzdHJlYWsgb2YgMT8gV2hhdCBhYm91dCBhIHN0cmVhayBsZW5ndGggb2YgMD8KQW5zd2VyOiBBIHN0cmVhayBsZW50aCBvZiAxIG1lYW5zIHRoZSBwbGF5ZXIgaGl0cyB0aGUgYmFza2V0IG9uY2UgYW5kIHRoYXQgb2YgMCBtZWFucyBubyBoaXRzLgoKYGBge3IgY29kZS1jaHVuay1sYWJlbH0Ka29iZV9zdHJlYWsgPC0gY2FsY19zdHJlYWsoa29iZV9iYXNrZXQkc2hvdCkKZ2dwbG90KGRhdGEgPSBrb2JlX3N0cmVhaywgYWVzKHggPSBsZW5ndGgpKSArIGdlb21fYmFyKCkKYGBgCgojIyMgRXhlcmNpc2UgMiAKVGhlIGRpc3RyaWJ1dGlvbiBvZiBLb2JlJ3Mgc3RyZWFrIGxlbmd0aCBpcyB0d2lzdGVkIHRvIGdldCBzaG9vdGluZyBzdHJlYWsuIFRoZSB0eXBpY2FsIHN0cmVhayBsZW5ndGggb2YgMCBvY2NvdXJzIGFwcHJveGltYXRlbHkgYnkgY291bnQgNDAgYW5kIHRoYXQgb2YgMSBpcyB3aXRoIHRoZSBjb3VudCBuZWFyIDI1LiBUaGUgbG9uZ2VzdCBzaG9vdGluZyBzdHJlYWsgbGVuZ3RoIG9mIDQgd2FzIGZvdW5kIGF0IGNvdW50IDEuCgoKIyMjIEV4ZXJjaXNlIDMKCmBgYHtSIENvZGUgY2h1bmsgcHJvYmliaWxpdHl9CnNldC5zZWVkKDM4NDcpICAjIG1ha2Ugc3VyZSB0byBjaGFuZ2UgdGhlIHNlZWQKY29pbl9vdXRjb21lcyA8LSBjKCJoZWFkcyIsICJ0YWlscyIpCnNhbXBsZShjb2luX291dGNvbWVzLCBzaXplID0gMSwgcmVwbGFjZSA9IFRSVUUpCnNpbV9mYWlyX2NvaW4gPC0gc2FtcGxlKGNvaW5fb3V0Y29tZXMsIHNpemUgPSAxMDAsIHJlcGxhY2UgPSBUUlVFKQpzaW1fZmFpcl9jb2luCnRhYmxlKHNpbV9mYWlyX2NvaW4pCnNpbV91bmZhaXJfY29pbiA8LSBzYW1wbGUoY29pbl9vdXRjb21lcywgc2l6ZSA9IDEwMCwgcmVwbGFjZSA9IFRSVUUsIHByb2IgPSBjKDAuMiwgMC44KSkKdGFibGUoc2ltX3VuZmFpcl9jb2luKQpgYGAKCiMjIyBFeGVyY2lzZSA0CgoKYGBge1IgY29kZSBjaHVuayBpbmRlcGVuZGVudCBzaG9vdGVyfQpzaG90X291dGNvbWVzIDwtYygiSCIsICJNIikKc2ltX2Jhc2tldCA8LSBzYW1wbGUoc2hvdF9vdXRjb21lcywgc2l6ZSA9IDEzMywgcmVwbGFjZSA9IFRSVUUsIHByb2IgPSBjKDAuNDUsIDAuNTUpKQpgYGAKCgoKIyMjIEV4ZXJjaXNlIDUKCmBgYHtSIGNvZGUgY2h1bmsgZm9yIHN0cmVhayBsZW5ndGh9CnNldC5zZWVkKDE5NzUpCnNob3Rfb3V0Y29tZXMgPC0gYygiSCIsICJNIikKc2ltX2Jhc2tldCA8LSBzYW1wbGUoc2hvdF9vdXRjb21lcywgc2l6ZSA9IDEzMywgcmVwbGFjZSA9IFRSVUUsIHByb2IgPSBjKDAuNDUsMC41NSkpCnNpbV9zdHJlYWsgPC1jYWxjX3N0cmVhayhzaW1fYmFza2V0KQpgYGAKCiMjIyBFeGVyY2lzZSA2CmBgYHtSIGNvZGUgY2h1bmsgZm9yIGRpcyBzdHJrIGxuZ3RofQpsaWJyYXJ5KGdncGxvdDIpCnNpbV9iYXNrZXQgPC0gc2FtcGxlKHNob3Rfb3V0Y29tZXMsIHNpemUgPSAxMzMsIHJlcGxhY2UgPSBUUlVFLCBwcm9iID0gYygwLjQ1LDAuNTUpKQpzaW1fc3RyZWFrIDwtY2FsY19zdHJlYWsoc2ltX2Jhc2tldCkKZ2dwbG90KGRhdGEgPXNpbV9zdHJlYWssIGFlcyh4ID0gbGVuZ3RoKSkgKyBnZW9tX2JhcigpCnN1bW1hcnkoY2FsY19zdHJlYWsoc2ltX2Jhc2tldCkpCmBgYAoKIyMjIEV4ZXJjaXNlIDcKSSBhbHJlYWR5IGV4cGVjdGVkIHRoZSBvdXRjb21lcyBvZiBkaXN0cmlidXRpb24gaXMgc2xpZ2h0bHkgZGlmZmVyZW50IGZyb20gYWJvdmUgcXVlc3Rpb24gYmVjYXVzZSBkYXRhIGZyYW1lcyBhcmUgbm90IHRoZSBzYW1lIGV2ZW4gdGhvdWdoIHNob290aW5nIHBlcmNlbnRhZ2UgaXMgaWRlbnRpY2FsLgoKIyMjIEV4ZXJjaXNlIDgKClRoZSBkaXN0cmlidXRpb25zIGxvb2sgdmVyeSBzaW1pbGFyIGFuZCByaWdodCBza2V3ZWQuLiBUaGVyZWZvcmUsIHRoZXJlIGlzIG5vIGV2aWRlbmNlIHRoYXQgdGhlIGhvdCBoYW5kIG1vZGVsIGZpdHMgS29iZSdzIHNob290aW5nIHBhdHRlcm5zLgoKCgoKCgoKCgoKCg==