lme
function - OrthodontThe fitted model is an object of class lme
representing the linear mixed-effects model fit. Generic functions such as print
, plot
and summary
have methods to show the results of the fit.
The Orthodont data frame has 108 rows and 4 columns of the change in an orthdontic measurement over time for several young subjects.
Investigators at the University of North Carolina Dental School followed the growth of 27 children (16 males, 11 females) from age 8 until age 14.
Every two years they measured the distance between the pituitary and the pterygomaxillary fissure, two points that are easily identified on x-ray exposures of the side of the head.
Load the {nlme} R package and the Orthodont data set.
Inspect the data set by looking at the last 6 cases.
library(nlme)
data(Orthodont)
tail(Orthodont)
## Grouped Data: distance ~ age | Subject
## distance age Subject Sex
## 103 19.0 12 F10 Female
## 104 19.5 14 F10 Female
## 105 24.5 8 F11 Female
## 106 25.0 10 F11 Female
## 107 28.0 12 F11 Female
## 108 28.0 14 F11 Female
lm1 <- lm(distance ~ age, data = Orthodont)
summary(lm1)
##
## Call:
## lm(formula = distance ~ age, data = Orthodont)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.5037 -1.5778 -0.1833 1.3519 6.3167
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 16.7611 1.2256 13.676 < 2e-16 ***
## age 0.6602 0.1092 6.047 2.25e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.537 on 106 degrees of freedom
## Multiple R-squared: 0.2565, Adjusted R-squared: 0.2495
## F-statistic: 36.56 on 1 and 106 DF, p-value: 2.248e-08
AIC(lm1)
## [1] 511.577
fm1 <- lme(distance ~ age, data = Orthodont,method="ML") # random is ~ age
summary(fm1)
## Linear mixed-effects model fit by maximum likelihood
## Data: Orthodont
## AIC BIC logLik
## 451.2116 467.3044 -219.6058
##
## Random effects:
## Formula: ~age | Subject
## Structure: General positive-definite
## StdDev Corr
## (Intercept) 2.1941125 (Intr)
## age 0.2149252 -0.581
## Residual 1.3100391
##
## Fixed effects: distance ~ age
## Value Std.Error DF t-value p-value
## (Intercept) 16.761111 0.7678985 80 21.82725 0
## age 0.660185 0.0705779 80 9.35399 0
## Correlation:
## (Intr)
## age -0.848
##
## Standardized Within-Group Residuals:
## Min Q1 Med Q3 Max
## -3.305962769 -0.487430154 0.007597924 0.482236304 3.922791903
##
## Number of Observations: 108
## Number of Groups: 27
AIC(fm1)
## [1] 451.2116
fm2 <- lme(distance ~ age + Sex, data = Orthodont, random = ~ 1)
summary(fm2)
## Linear mixed-effects model fit by REML
## Data: Orthodont
## AIC BIC logLik
## 447.5125 460.7823 -218.7563
##
## Random effects:
## Formula: ~1 | Subject
## (Intercept) Residual
## StdDev: 1.807425 1.431592
##
## Fixed effects: distance ~ age + Sex
## Value Std.Error DF t-value p-value
## (Intercept) 17.706713 0.8339225 80 21.233044 0.0000
## age 0.660185 0.0616059 80 10.716263 0.0000
## SexFemale -2.321023 0.7614168 25 -3.048294 0.0054
## Correlation:
## (Intr) age
## age -0.813
## SexFemale -0.372 0.000
##
## Standardized Within-Group Residuals:
## Min Q1 Med Q3 Max
## -3.74889609 -0.55034466 -0.02516628 0.45341781 3.65746539
##
## Number of Observations: 108
## Number of Groups: 27
par(mfrow=c(2,2))
plot(fm2,pch=18)
par(mfrow=c(1,1))