IMR and TFR

Harold Nelson

2023-03-03

Setup

library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ ggplot2 3.3.6      ✔ purrr   0.3.4 
## ✔ tibble  3.1.8      ✔ dplyr   1.0.10
## ✔ tidyr   1.2.1      ✔ stringr 1.4.1 
## ✔ readr   2.1.2      ✔ forcats 0.5.2 
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
library(janitor)
## 
## Attaching package: 'janitor'
## 
## The following objects are masked from 'package:stats':
## 
##     chisq.test, fisher.test
library(plotly)
## 
## Attaching package: 'plotly'
## 
## The following object is masked from 'package:ggplot2':
## 
##     last_plot
## 
## The following object is masked from 'package:stats':
## 
##     filter
## 
## The following object is masked from 'package:graphics':
## 
##     layout
load("TFR_long.Rdata")
load("IMR_long.Rdata")

Check for Mismatches

miss = anti_join(IMR_long,
                 TFR_long,
                 by = c("country_name","year"))
nrow(miss)
## [1] 0

Join

IMR_TFR = IMR_long %>% 
   left_join(TFR_long,
        by = c("country_name",
               "country_code",
               "year"))
glimpse(IMR_TFR)
## Rows: 16,226
## Columns: 5
## $ country_name <chr> "Aruba", "Aruba", "Aruba", "Aruba", "Aruba", "Aruba", "Ar…
## $ country_code <chr> "ABW", "ABW", "ABW", "ABW", "ABW", "ABW", "ABW", "ABW", "…
## $ year         <dbl> 1960, 1961, 1962, 1963, 1964, 1965, 1966, 1967, 1968, 196…
## $ IMR          <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…
## $ TFR          <dbl> 4.820, 4.655, 4.471, 4.271, 4.059, 3.842, 3.625, 3.417, 3…

Do a scatterplot of TFR by IMR

g = IMR_TFR %>% 
  ggplot(aes(IMR,TFR,group = country_name)) +
  geom_point(size = .1)
ggplotly(g)

Improve on this