diamonds %>%
ggplot(aes(x = cut)) +
geom_bar()
diamonds %>%
ggplot(mapping = aes(x = carat)) +
geom_histogram(binwidth = 0.5)
diamonds %>%
filter(carat < 3) %>%
ggplot(aes(x = carat)) +
geom_histogram(binwidth = 0.5)
diamonds %>%
ggplot(aes(x = carat, color = cut)) +
geom_freqpoly()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
diamonds %>%
#Filter out diamonds < 3
filter(carat < 3) %>%
#Plot
ggplot(aes(x = carat)) +
geom_histogram(binwidth = 0.01)
ggplot(data = faithful, mapping = aes(x = eruptions)) +
geom_histogram(binwidth = 0.25)
###Unusual Values
ggplot(diamonds) +
geom_histogram(mapping = aes(x = y), binwidth = 0.5) +
coord_cartesian(ylim = c(0, 50))
diamonds %>%
# filter(y < 3 | y > 20) %>%
mutate(y = ifelse(y < 3 | y > 20, NA, y)) %>%
# Plot
ggplot(aes(x = x, y = y)) +
geom_point()
## Warning: Removed 9 rows containing missing values (`geom_point()`).
ggplot(data = diamonds, mapping = aes(x = cut, y = price)) +
geom_boxplot()
diamonds %>%
count(color, cut) %>%
ggplot(mapping = aes(x = color, y = cut)) +
geom_tile(mapping = aes(fill = n))
library(hexbin)
diamonds %>%
ggplot(aes(x = carat, y = price)) +
geom_hex()
diamonds %>%
filter(carat < 3) %>%
ggplot(aes(x = carat, y = price)) +
geom_boxplot(aes(group = cut_width(carat, 0.1)))
library(modelr)
mod <- lm(log(price) ~ log(carat), data = diamonds)
diamonds2 <- diamonds %>%
add_residuals(mod) %>%
mutate(resid = exp(resid))
ggplot(data = diamonds2) +
geom_point(mapping = aes(x = carat, y = resid))
ggplot(data = diamonds2) +
geom_boxplot(mapping = aes(x = cut, y = resid))