library(knitcitations)
Current ratio (Look Investopedia!)
(7-8 lines) The current
ratio is a liquidity ratio that measures a company’s ability to pay
short-term obligations or those due within one year. It tells investors
and analysts how a company can maximize the current assets on its
balance sheet to satisfy its current debt and other payables.
A current ratio that is in line with the industry average or slightly
higher is generally considered acceptable. A current ratio that is lower
than the industry average may indicate a higher risk of distress or
default. Similarly, if a company has a very high current ratio compared
with its peer group, it indicates that management may not be using its
assets efficiently.
\[Current\_Ratio =
\frac{Current\_liabilities}{Current\_assets}\]
Data
The data originate from the web side Mendeley data and are a
side-product of the research published by Stanišić et al. (2020). The data involve various
primary and secondary data on the Serbian companies from the 2007-2015.
They also include the data regarding the accontancy audits. The near
explanation of the data presents the above given paper..(5-7 lines)… The
current ratio is expressed as the share of AOP 0043 / AOP 0442
accounts.
Hypothesis
We expect that large companies have better current ratio because of
providing more secure trades… Our aim is to provide some graphical
analysis explaining this fact. The following assignment will provide
more advanced statistics. (as it is Your first step in data processing,
I recommend You to use exactly the same kind of the analysis as me, but
with other indicatiors - next time, we will extend our space for the
other analysis significantly).
Data processing and results
udaje <<- read.csv2("udaje.csv") # import of the .csv data to data.frame
# udaje become global - see operator <<-
######### cleaning data - identification, where are the data missing
library(Amelia)
missmap(udaje)

udaje <<- na.omit(udaje)
missmap(udaje)

For continuing the analysis, the database needs even more
reconstruction. First of all, we need exclude variables we do not need
for achieving our goals. Inspecting the paper of Stanišić et al. (2020) we decided to use just
“AOP71”, “AOP43”,“AOP442” columns.
selected.cols <- c("AOP71", "AOP43","AOP442") #CHANGE
udaje.tmp <<- udaje[,selected.cols] # extracting just columns defined in the previous line
# substitution of txt variables to numeric ones (change nothing!!!!)
# rather redundant commands, but avoiding problems of confusing data types (numeric vs texts)
# I defined function within apply - conversion of data from text to numeric types
# because some of the data were stored as character strings
udaje.tmp <- apply(udaje.tmp, c(1,2),function(x) as.numeric(as.character(x)))
udaje.tmp <<- data.frame(udaje.tmp)
udaje.tmp$current.ratio <- udaje.tmp$AOP43 / udaje.tmp$AOP442 #CHANGE
udaje.tmp$total.assets <- udaje.tmp$AOP71 # CHANGE
# 1st and 3rd quartle of total assets
# identification of the 25th percentil - 25 percent of the firms have less total.assets then quart1
quart1 <- quantile(udaje.tmp$total.assets, probs = 0.25)
quart3 <- quantile(udaje.tmp$total.assets, probs = 0.75)
# library
#library(ggplot2) # highly popular library for plotting, however, I have not used it
# see https://r-graph-gallery.com/ to choose th3e plot and find an appropriate code
boxplot(udaje.tmp$current.ratio[udaje.tmp$total.assets >= quart3], udaje.tmp$current.ratio[udaje.tmp$total.assets <= quart3],
names = c("Large firms", "Small firms"), # CHANGE
ylab = "Current.ratio",
main = "Figure")

We are not able to see, whether the boxex overlay, because of the
oulier data. That is, why I decided to change the vertical axes scale in
the graph as follows
boxplot(udaje.tmp$current.ratio[udaje.tmp$total.assets >= quart3], udaje.tmp$current.ratio[udaje.tmp$total.assets <= quart3],
names = c("Large firms", "Small firms"), # CHANGE
ylab = "Current.ratio",
main = "Figure",
ylim = c(0,10))

Now, we clarly see that boxes (rectanles) overlay - ther is no
difference between large and small firms if speaking about current
ratio.
Stanišić, Nemanja et al. 2020. “Empirical Data on Financial and
Audit Reports of Serbian Business Entities.” FINIZ
2020-People in the Focus of Process Automation, 193–98.
LS0tCnRpdGxlOiAiRG9lcyB0aGUgc2l6ZSBtYXR0ZXI/IC0gY29tcGFyaXNvbiBvZiB0aGUgQ3VycmVudCByYXRpbyBvZiB0aGUgbGFyZ2UgYW5kIHNtYWxsCiAgc2VpemVkIGZpcm1zIgphdXRob3I6ICJWRyIKb3V0cHV0OiBodG1sX25vdGVib29rCmJpYmxpb2dyYXBoeTogcmVmZXJlbmNlcy5iaWIKLS0tCgpgYGB7cn0KbGlicmFyeShrbml0Y2l0YXRpb25zKQpgYGAKCmBgYHtyIGwxLCBlY2hvPUZBTFNFfQprbml0cjo6b3B0c19jaHVuayRzZXQod2FybmluZyA9IEZBTFNFLCBtZXNzYWdlID0gRkFMU0UpCgpgYGAKCiMjIEN1cnJlbnQgcmF0aW8gIChMb29rIEludmVzdG9wZWRpYSEpCgooNy04IGxpbmVzKQogVGhlIFtjdXJyZW50IHJhdGlvXShodHRwczovL3d3dy5pbnZlc3RvcGVkaWEuY29tL3Rlcm1zL2MvY3VycmVudHJhdGlvLmFzcCkgaXMgYSBsaXF1aWRpdHkgcmF0aW8gdGhhdCBtZWFzdXJlcyBhIGNvbXBhbnnigJlzIGFiaWxpdHkgdG8gcGF5IHNob3J0LXRlcm0gb2JsaWdhdGlvbnMgb3IgdGhvc2UgZHVlIHdpdGhpbiBvbmUgeWVhci4gSXQgdGVsbHMgaW52ZXN0b3JzIGFuZCBhbmFseXN0cyBob3cgYSBjb21wYW55IGNhbiBtYXhpbWl6ZSB0aGUgY3VycmVudCBhc3NldHMgb24gaXRzIGJhbGFuY2Ugc2hlZXQgdG8gc2F0aXNmeSBpdHMgY3VycmVudCBkZWJ0IGFuZCBvdGhlciBwYXlhYmxlcy4KCkEgY3VycmVudCByYXRpbyB0aGF0IGlzIGluIGxpbmUgd2l0aCB0aGUgaW5kdXN0cnkgYXZlcmFnZSBvciBzbGlnaHRseSBoaWdoZXIgaXMgZ2VuZXJhbGx5IGNvbnNpZGVyZWQgYWNjZXB0YWJsZS4gQSBjdXJyZW50IHJhdGlvIHRoYXQgaXMgbG93ZXIgdGhhbiB0aGUgaW5kdXN0cnkgYXZlcmFnZSBtYXkgaW5kaWNhdGUgYSBoaWdoZXIgcmlzayBvZiBkaXN0cmVzcyBvciBkZWZhdWx0LiBTaW1pbGFybHksIGlmIGEgY29tcGFueSBoYXMgYSB2ZXJ5IGhpZ2ggY3VycmVudCByYXRpbyBjb21wYXJlZCB3aXRoIGl0cyBwZWVyIGdyb3VwLCBpdCBpbmRpY2F0ZXMgdGhhdCBtYW5hZ2VtZW50IG1heSBub3QgYmUgdXNpbmcgaXRzIGFzc2V0cyBlZmZpY2llbnRseS4KCiQkQ3VycmVudFxfUmF0aW8gPSBcZnJhY3tDdXJyZW50XF9saWFiaWxpdGllc317Q3VycmVudFxfYXNzZXRzfSQkCgojIyBEYXRhCgpUaGUgZGF0YSBvcmlnaW5hdGUgZnJvbSB0aGUgd2ViIHNpZGUgW01lbmRlbGV5IGRhdGFdKGh0dHBzOi8vZGF0YS5tZW5kZWxleS5jb20vKSBhbmQgYXJlIGEgc2lkZS1wcm9kdWN0IG9mIHRoZSByZXNlYXJjaCBwdWJsaXNoZWQgYnkgQHN0YW5pdnNpYzIwMjBlbXBpcmljYWwuClRoZSBkYXRhIGludm9sdmUgdmFyaW91cyBwcmltYXJ5IGFuZCBzZWNvbmRhcnkgZGF0YSBvbiB0aGUgU2VyYmlhbiBjb21wYW5pZXMgZnJvbSB0aGUgMjAwNy0yMDE1LiBUaGV5IGFsc28gaW5jbHVkZSB0aGUgZGF0YSByZWdhcmRpbmcgdGhlIGFjY29udGFuY3kgYXVkaXRzLiBUaGUgbmVhciBleHBsYW5hdGlvbiBvZiB0aGUgZGF0YSBwcmVzZW50cyB0aGUgYWJvdmUgZ2l2ZW4gcGFwZXIuLig1LTcgbGluZXMpLi4uClRoZSBjdXJyZW50IHJhdGlvIGlzIGV4cHJlc3NlZCBhcyB0aGUgc2hhcmUgb2YgQU9QIDAwNDMgLyBBT1AgMDQ0MsKgIGFjY291bnRzLgoKIyMgSHlwb3RoZXNpcwoKV2UgZXhwZWN0IHRoYXQgbGFyZ2UgY29tcGFuaWVzIGhhdmUgYmV0dGVyIGN1cnJlbnQgcmF0aW8gYmVjYXVzZSBvZiBwcm92aWRpbmcgbW9yZSBzZWN1cmUgdHJhZGVzLi4uCk91ciBhaW0gaXMgdG8gcHJvdmlkZSBzb21lIGdyYXBoaWNhbCBhbmFseXNpcyBleHBsYWluaW5nIHRoaXMgZmFjdC4gVGhlIGZvbGxvd2luZyBhc3NpZ25tZW50ICB3aWxsIHByb3ZpZGUgbW9yZSBhZHZhbmNlZCBzdGF0aXN0aWNzLiAoYXMgaXQgaXMgWW91ciBmaXJzdCBzdGVwIGluIGRhdGEgcHJvY2Vzc2luZywgSSByZWNvbW1lbmQgWW91IHRvIHVzZSBleGFjdGx5IHRoZSBzYW1lIGtpbmQgb2YgdGhlIGFuYWx5c2lzIGFzIG1lLCBidXQgd2l0aCBvdGhlciBpbmRpY2F0aW9ycyAtIG5leHQgdGltZSwgd2Ugd2lsbCBleHRlbmQgb3VyIHNwYWNlIGZvciB0aGUgb3RoZXIgYW5hbHlzaXMgc2lnbmlmaWNhbnRseSkuCgojIyBEYXRhIHByb2Nlc3NpbmcgYW5kIHJlc3VsdHMKCmBgYHtyIERhdGFfcmVhZGluZ19hbmRfY2xlYW5pbmd9CnVkYWplIDw8LSByZWFkLmNzdjIoInVkYWplLmNzdiIpICAgICAgIyBpbXBvcnQgb2YgdGhlIC5jc3YgZGF0YSB0byBkYXRhLmZyYW1lICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAjIHVkYWplIGJlY29tZSBnbG9iYWwgLSBzZWUgb3BlcmF0b3IgPDwtCiMjIyMjIyMjIyAgIGNsZWFuaW5nIGRhdGEgLSBpZGVudGlmaWNhdGlvbiwgd2hlcmUgYXJlIHRoZSBkYXRhIG1pc3NpbmcgCmxpYnJhcnkoQW1lbGlhKQptaXNzbWFwKHVkYWplKSAKCmBgYAoKYGBge3IgZWxpbWluaXRpbmdfTkFfcm93c30KCnVkYWplIDw8LSBuYS5vbWl0KHVkYWplKQptaXNzbWFwKHVkYWplKQpgYGAKCkZvciBjb250aW51aW5nIHRoZSBhbmFseXNpcywgdGhlIGRhdGFiYXNlIG5lZWRzIGV2ZW4gbW9yZSByZWNvbnN0cnVjdGlvbi4gRmlyc3Qgb2YgYWxsLCB3ZSBuZWVkIGV4Y2x1ZGUgdmFyaWFibGVzIHdlIGRvIG5vdCBuZWVkIGZvciBhY2hpZXZpbmcgb3VyIGdvYWxzLiBJbnNwZWN0aW5nIHRoZSBwYXBlciBvZiBAc3Rhbml2c2ljMjAyMGVtcGlyaWNhbCB3ZSBkZWNpZGVkIHRvIHVzZSBqdXN0ICJBT1A3MSIsICJBT1A0MyIsIkFPUDQ0MiIgY29sdW1ucy4KCgpgYGB7ciB2YXJpYWJsZV9zZWxlY3Rpb259CnNlbGVjdGVkLmNvbHMgPC0gYygiQU9QNzEiLCAiQU9QNDMiLCJBT1A0NDIiKSAgICAjQ0hBTkdFCnVkYWplLnRtcCA8PC0gdWRhamVbLHNlbGVjdGVkLmNvbHNdICAjIGV4dHJhY3RpbmcganVzdCBjb2x1bW5zIGRlZmluZWQgaW4gdGhlIHByZXZpb3VzIGxpbmUKIyBzdWJzdGl0dXRpb24gb2YgdHh0IHZhcmlhYmxlcyB0byBudW1lcmljIG9uZXMgIChjaGFuZ2Ugbm90aGluZyEhISEpCiMgcmF0aGVyIHJlZHVuZGFudCBjb21tYW5kcywgYnV0IGF2b2lkaW5nIHByb2JsZW1zIG9mIGNvbmZ1c2luZyBkYXRhIHR5cGVzIChudW1lcmljIHZzIHRleHRzKQoKIyBJIGRlZmluZWQgZnVuY3Rpb24gd2l0aGluIGFwcGx5ICAtIGNvbnZlcnNpb24gb2YgZGF0YSBmcm9tIHRleHQgdG8gbnVtZXJpYyB0eXBlcwojIGJlY2F1c2Ugc29tZSBvZiB0aGUgZGF0YSB3ZXJlIHN0b3JlZCBhcyBjaGFyYWN0ZXIgc3RyaW5ncwp1ZGFqZS50bXAgPC0gYXBwbHkodWRhamUudG1wLCBjKDEsMiksZnVuY3Rpb24oeCkgYXMubnVtZXJpYyhhcy5jaGFyYWN0ZXIoeCkpKQoKYGBgCgpgYGB7ciBhYWF9CnVkYWplLnRtcCA8PC0gZGF0YS5mcmFtZSh1ZGFqZS50bXApCnVkYWplLnRtcCRjdXJyZW50LnJhdGlvIDwtIHVkYWplLnRtcCRBT1A0MyAvIHVkYWplLnRtcCRBT1A0NDIgICAgICAgICNDSEFOR0UKdWRhamUudG1wJHRvdGFsLmFzc2V0cyA8LSB1ZGFqZS50bXAkQU9QNzEgICAgICAgICAgICAgICAgICAgICAgICAgICAjIENIQU5HRQoKIyAxc3QgYW5kIDNyZCBxdWFydGxlIG9mIHRvdGFsIGFzc2V0cwojIGlkZW50aWZpY2F0aW9uIG9mIHRoZSAyNXRoIHBlcmNlbnRpbCAtIDI1IHBlcmNlbnQgb2YgdGhlIGZpcm1zIGhhdmUgIGxlc3MgdG90YWwuYXNzZXRzIHRoZW4gcXVhcnQxCnF1YXJ0MSA8LSBxdWFudGlsZSh1ZGFqZS50bXAkdG90YWwuYXNzZXRzLCBwcm9icyA9IDAuMjUpICAgIApxdWFydDMgPC0gcXVhbnRpbGUodWRhamUudG1wJHRvdGFsLmFzc2V0cywgcHJvYnMgPSAwLjc1KQoKYGBgCgoKCgpgYGB7ciBib3hwbG90c30KIyBsaWJyYXJ5CiNsaWJyYXJ5KGdncGxvdDIpICAgICAgIyBoaWdobHkgcG9wdWxhciBsaWJyYXJ5IGZvciBwbG90dGluZywgaG93ZXZlciwgSSBoYXZlIG5vdCB1c2VkIGl0CiAgICAgICAgICAgICAgICAgICAgICAjIHNlZSBodHRwczovL3ItZ3JhcGgtZ2FsbGVyeS5jb20vIHRvIGNob29zZSB0aDNlIHBsb3QgYW5kIGZpbmQgYW4gYXBwcm9wcmlhdGUgY29kZQoKIAoKYm94cGxvdCh1ZGFqZS50bXAkY3VycmVudC5yYXRpb1t1ZGFqZS50bXAkdG90YWwuYXNzZXRzID49IHF1YXJ0M10sIHVkYWplLnRtcCRjdXJyZW50LnJhdGlvW3VkYWplLnRtcCR0b3RhbC5hc3NldHMgPD0gcXVhcnQzXSwgCiAgICAgICAgIG5hbWVzID0gYygiTGFyZ2UgZmlybXMiLCAiU21hbGwgZmlybXMiKSwgIyBDSEFOR0UKICAgICAgICAgeWxhYiA9ICJDdXJyZW50LnJhdGlvIiwgCiAgICAgICAgIG1haW4gPSAiRmlndXJlIikKCmBgYAoKV2UgYXJlIG5vdCBhYmxlIHRvIHNlZSwgd2hldGhlciB0aGUgYm94ZXggb3ZlcmxheSwgYmVjYXVzZSBvZiB0aGUgb3VsaWVyIGRhdGEuIFRoYXQgaXMsIHdoeSBJIGRlY2lkZWQgdG8gY2hhbmdlIHRoZSB2ZXJ0aWNhbCBheGVzIHNjYWxlIGluIHRoZSBncmFwaCBhcyBmb2xsb3dzCgoKCmBgYHtyIGJveHBsb3RzMn0KCmJveHBsb3QodWRhamUudG1wJGN1cnJlbnQucmF0aW9bdWRhamUudG1wJHRvdGFsLmFzc2V0cyA+PSBxdWFydDNdLCB1ZGFqZS50bXAkY3VycmVudC5yYXRpb1t1ZGFqZS50bXAkdG90YWwuYXNzZXRzIDw9IHF1YXJ0M10sIAogICAgICAgICBuYW1lcyA9IGMoIkxhcmdlIGZpcm1zIiwgIlNtYWxsIGZpcm1zIiksICMgQ0hBTkdFCiAgICAgICAgIHlsYWIgPSAiQ3VycmVudC5yYXRpbyIsIAogICAgICAgICBtYWluID0gIkZpZ3VyZSIsCiAgICAgICAgeWxpbSA9IGMoMCwxMCkpCgpgYGAKCk5vdywgd2UgY2xhcmx5IHNlZSB0aGF0IGJveGVzIChyZWN0YW5sZXMpIG92ZXJsYXkgLSB0aGVyIGlzIG5vIGRpZmZlcmVuY2UgYmV0d2VlbiBsYXJnZSBhbmQgc21hbGwgZmlybXMgaWYgc3BlYWtpbmcgYWJvdXQgY3VycmVudCByYXRpby4KCmBgYHtyIGJpYiwgZWNobz1GQUxTRX0KI2JpYmxpb2dyYXBoeTogcmVmZXJlbmNlcy5iaWIKI2tuaXRjaXRhdGlvbnM6OmtuaXRjaXRhdGlvbnMoKQoKYGBgCgo=