Workshop

Let’s learn basic economics in R

loading Pakages

Data

#Import
dictator <- read.csv("dictator.csv")

#mydata<- read.csv("C:/Econometrics/Data/panel_wage.csv")
attach(dictator)

In case you want to use XLSX file you can follow this instructions http://www.sthda.com/english/wiki/reading-data-from-excel-files-xls-xlsx-into-r

Checking the Data

str(dictator)
## 'data.frame':    218 obs. of  6 variables:
##  $ ID           : int  522 302 111 511 406 605 314 603 8 409 ...
##  $ in_group     : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ giving       : int  5 0 0 5 10 5 10 5 20 15 ...
##  $ age          : int  1 4 2 1 4 1 1 1 1 4 ...
##  $ yearly_income: int  540 550 700 800 1100 1500 1500 2000 2000 2000 ...
##  $ female       : int  1 0 0 1 0 0 1 0 1 1 ...
summary(dictator)
##        ID           in_group       giving            age        yearly_income  
##  Min.   :  1.0   Min.   :0.0   Min.   : 0.000   Min.   :1.000   Min.   :  540  
##  1st Qu.:203.0   1st Qu.:0.0   1st Qu.: 3.000   1st Qu.:1.000   1st Qu.: 4000  
##  Median :315.0   Median :0.5   Median :10.000   Median :3.000   Median : 7100  
##  Mean   :352.5   Mean   :0.5   Mean   : 8.491   Mean   :2.569   Mean   : 9936  
##  3rd Qu.:522.0   3rd Qu.:1.0   3rd Qu.:10.000   3rd Qu.:4.000   3rd Qu.:10000  
##  Max.   :633.0   Max.   :1.0   Max.   :30.000   Max.   :5.000   Max.   :75000  
##                                                                 NA's   :6      
##      female      
##  Min.   :0.0000  
##  1st Qu.:0.0000  
##  Median :0.0000  
##  Mean   :0.4128  
##  3rd Qu.:1.0000  
##  Max.   :1.0000  
## 
plot(dictator)

hist(dictator$giving)

out  <- subset(dictator$giving, dictator$in_group ==0 )
ing  <- subset(dictator$giving, dictator$in_group ==1 )




#Let's go Fancy
# histogram with added parameters
hist(dictator$giving,
main="Dictator Game",
xlab="Amount Given",
col="darkmagenta",
freq=TRUE
)

library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ tibble  3.1.8      ✔ dplyr   1.0.10
## ✔ tidyr   1.3.0      ✔ stringr 1.5.0 
## ✔ readr   2.1.4      ✔ forcats 1.0.0 
## ✔ purrr   1.0.1      
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::between() masks plm::between()
## ✖ dplyr::filter()  masks stats::filter()
## ✖ dplyr::lag()     masks plm::lag(), stats::lag()
## ✖ dplyr::lead()    masks plm::lead()
# create dummy data
ggplot(dictator) +
    geom_bar( aes(x=in_group, y=(giving)), stat="identity", fill="skyblue", alpha=0.7) +
    theme_bw()+
    theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank())+
    labs(title = "Groups", x="In group and Out group", y = "Total")

    #geom_errorbar( aes(x=name, ymin=value-sd, ymax=value+sd), width=0.4, colour="orange", alpha=0.9, size=1.3)
#install.packages("plotly")
library(dbplyr)
## 
## Attaching package: 'dbplyr'
## The following objects are masked from 'package:dplyr':
## 
##     ident, sql
library(plotly)
## 
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
## 
##     last_plot
## The following object is masked from 'package:stats':
## 
##     filter
## The following object is masked from 'package:graphics':
## 
##     layout
data <- read.csv('dictator.csv')
df_mean <- data %>% group_by(in_group)%>%summarise(mean(giving))
df_mean$str <- c("0","1")

fig <-  plot_ly(x = df_mean$str,y = df_mean$`mean(giving)`,type = 'bar',color = ~ df_mean$str)%>%
  layout(#title = "........",list(size= 20),
    xaxis = list(title = "In Group",titlefont = list(size=10 )),
    yaxis = list(title = "Giving",  titlefont = list(size=10)))

print(fig)
## Warning in RColorBrewer::brewer.pal(N, "Set2"): minimal value for n is 3, returning requested palette with 3 different levels

## Warning in RColorBrewer::brewer.pal(N, "Set2"): minimal value for n is 3, returning requested palette with 3 different levels

Data Manipulation

#missing data
is.na(dictator)
##           ID in_group giving   age yearly_income female
##   [1,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##   [2,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##   [3,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##   [4,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##   [5,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##   [6,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##   [7,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##   [8,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##   [9,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [10,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [11,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [12,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [13,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [14,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [15,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [16,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [17,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [18,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [19,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [20,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [21,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [22,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [23,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [24,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [25,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [26,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [27,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [28,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [29,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [30,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [31,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [32,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [33,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [34,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [35,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [36,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [37,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [38,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [39,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [40,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [41,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [42,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [43,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [44,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [45,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [46,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [47,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [48,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [49,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [50,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [51,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [52,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [53,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [54,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [55,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [56,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [57,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [58,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [59,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [60,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [61,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [62,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [63,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [64,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [65,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [66,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [67,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [68,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [69,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [70,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [71,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [72,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [73,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [74,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [75,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [76,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [77,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [78,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [79,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [80,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [81,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [82,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [83,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [84,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [85,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [86,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [87,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [88,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [89,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [90,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [91,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [92,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [93,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [94,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [95,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [96,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [97,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [98,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
##  [99,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [100,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [101,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [102,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [103,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [104,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [105,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [106,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [107,] FALSE    FALSE  FALSE FALSE          TRUE  FALSE
## [108,] FALSE    FALSE  FALSE FALSE          TRUE  FALSE
## [109,] FALSE    FALSE  FALSE FALSE          TRUE  FALSE
## [110,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [111,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [112,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [113,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [114,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [115,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [116,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [117,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [118,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [119,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [120,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [121,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [122,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [123,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [124,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [125,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [126,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [127,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [128,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [129,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [130,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [131,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [132,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [133,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [134,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [135,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [136,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [137,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [138,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [139,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [140,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [141,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [142,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [143,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [144,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [145,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [146,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [147,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [148,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [149,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [150,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [151,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [152,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [153,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [154,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [155,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [156,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [157,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [158,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [159,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [160,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [161,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [162,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [163,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [164,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [165,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [166,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [167,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [168,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [169,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [170,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [171,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [172,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [173,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [174,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [175,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [176,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [177,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [178,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [179,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [180,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [181,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [182,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [183,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [184,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [185,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [186,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [187,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [188,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [189,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [190,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [191,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [192,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [193,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [194,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [195,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [196,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [197,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [198,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [199,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [200,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [201,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [202,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [203,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [204,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [205,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [206,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [207,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [208,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [209,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [210,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [211,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [212,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [213,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [214,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [215,] FALSE    FALSE  FALSE FALSE         FALSE  FALSE
## [216,] FALSE    FALSE  FALSE FALSE          TRUE  FALSE
## [217,] FALSE    FALSE  FALSE FALSE          TRUE  FALSE
## [218,] FALSE    FALSE  FALSE FALSE          TRUE  FALSE
newdata <- na.omit(dictator)
mean(newdata$yearly_income)
## [1] 9935.755
mean(dictator$yearly_income) #not going to work
## [1] NA
mean(dictator$yearly_income, na.rm=TRUE) # returns 
## [1] 9935.755

Creating subsets

fem <- subset(dictator, female==1)

OLS

OLS is simple regression model

pooling <- lm(giving ~ age+yearly_income+female+in_group, data= dictator)
summary(pooling)
## 
## Call:
## lm(formula = giving ~ age + yearly_income + female + in_group, 
##     data = dictator)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -11.308  -5.848  -1.036   3.901  20.493 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    5.868e+00  1.335e+00   4.397 1.76e-05 ***
## age            5.009e-01  3.635e-01   1.378 0.169755    
## yearly_income -3.376e-05  3.993e-05  -0.845 0.398832    
## female         1.782e-01  1.026e+00   0.174 0.862191    
## in_group       3.274e+00  9.788e-01   3.345 0.000978 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.125 on 207 degrees of freedom
##   (6 observations deleted due to missingness)
## Multiple R-squared:  0.06133,    Adjusted R-squared:  0.04319 
## F-statistic: 3.381 on 4 and 207 DF,  p-value: 0.0105

Automated Version

#Assign variables
Y <- cbind(dictator$giving)
X <- cbind(dictator$in_group,dictator$age,dictator$yearly_income,dictator$female)


# Pooled OLS estimator
pooling <- lm(Y ~ X, data=dictator)
summary(pooling)
## 
## Call:
## lm(formula = Y ~ X, data = dictator)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -11.308  -5.848  -1.036   3.901  20.493 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  5.868e+00  1.335e+00   4.397 1.76e-05 ***
## X1           3.274e+00  9.788e-01   3.345 0.000978 ***
## X2           5.009e-01  3.635e-01   1.378 0.169755    
## X3          -3.376e-05  3.993e-05  -0.845 0.398832    
## X4           1.782e-01  1.026e+00   0.174 0.862191    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.125 on 207 degrees of freedom
##   (6 observations deleted due to missingness)
## Multiple R-squared:  0.06133,    Adjusted R-squared:  0.04319 
## F-statistic: 3.381 on 4 and 207 DF,  p-value: 0.0105

Statistics

# Descriptive statistics
summary(Y)
##        V1        
##  Min.   : 0.000  
##  1st Qu.: 3.000  
##  Median :10.000  
##  Mean   : 8.491  
##  3rd Qu.:10.000  
##  Max.   :30.000
summary(X)
##        V1            V2              V3              V4        
##  Min.   :0.0   Min.   :1.000   Min.   :  540   Min.   :0.0000  
##  1st Qu.:0.0   1st Qu.:1.000   1st Qu.: 4000   1st Qu.:0.0000  
##  Median :0.5   Median :3.000   Median : 7100   Median :0.0000  
##  Mean   :0.5   Mean   :2.569   Mean   : 9936   Mean   :0.4128  
##  3rd Qu.:1.0   3rd Qu.:4.000   3rd Qu.:10000   3rd Qu.:1.0000  
##  Max.   :1.0   Max.   :5.000   Max.   :75000   Max.   :1.0000  
##                                NA's   :6

Resources and References

https://sites.google.com/site/econometricsacademy/econometrics-models/panel-data-models

https://www.datamentor.io/r-programming/histogram/ (histogram)