Regresion de poisson y logistica multiple para muestra unificada (20 de octubre)


# 28 de octubre 2013

load("~/Dropbox/odontologia/maestria_anunziatta/BancoUnidoBrasUru/BRASURU(28102013).RData")

library(survey)
## Attaching package: 'survey'
## 
## The following object(s) are masked from 'package:graphics':
## 
## dotchart
levels(disenio_urubra$variables$prevoms)
## [1] "1-SinCavi" "2-conCavi"
table(disenio_urubra$variables$cpodoms, disenio_urubra$variables$prevoms)
##     
##      1-SinCavi 2-conCavi
##   0       1105         0
##   1          0       495
##   2          0       404
##   3          0       259
##   4          0       217
##   5          0       108
##   6          0        38
##   7          0        22
##   8          0        14
##   9          0        12
##   10         0         3
##   11         0         3
##   14         0         1
##   15         0         1

REGRESIÓN LOGÍSTICA: 1.País 2.Escomaerecat23 3. Freqescavacat

modelo2multi.bin <- svyglm(prevoms ~ pais + escolmaerecat23cat + freqescovacat, 
    disenio_urubra, family = quasibinomial())
summary(modelo2multi.bin)
## 
## Call:
## svyglm(formula = prevoms ~ pais + escolmaerecat23cat + freqescovacat, 
##     disenio_urubra, family = quasibinomial())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##                                       Estimate Std. Error t value Pr(>|t|)
## (Intercept)                             -0.184      0.196   -0.94  0.35010
## paisUru                                  0.493      0.125    3.95  0.00017
## escolmaerecat23cat2-high school          0.521      0.158    3.29  0.00153
## escolmaerecat23cat3-elementary school    1.049      0.179    5.87  1.1e-07
## freqescovacat2-veces al d\xeda          -0.284      0.134   -2.12  0.03749
## freqescovacat3-veces al d\xeda          -0.457      0.151   -3.03  0.00332
##                                          
## (Intercept)                              
## paisUru                               ***
## escolmaerecat23cat2-high school       ** 
## escolmaerecat23cat3-elementary school ***
## freqescovacat2-veces al d\xeda        *  
## freqescovacat3-veces al d\xeda        ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 1.002)
## 
## Number of Fisher Scoring iterations: 4
anova(modelo2multi.bin)
## Anova table:  (Rao-Scott LRT)
## svyglm(formula = prevoms ~ pais, disenio_urubra, family = quasibinomial())
##                     stats   DEff     df ddf       p    
## pais                 9.85   3.22   1.00  80   0.086 .  
## escolmaerecat23cat 175.44   1.69   2.00  78 1.4e-12 ***
## freqescovacat       66.45   1.72   2.00  76 7.7e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
confint(modelo2multi.bin)
##                                         2.5 %   97.5 %
## (Intercept)                           -0.5689  0.20005
## paisUru                                0.2485  0.73689
## escolmaerecat23cat2-high school        0.2104  0.83131
## escolmaerecat23cat3-elementary school  0.6982  1.39886
## freqescovacat2-veces al d\xeda        -0.5478 -0.02116
## freqescovacat3-veces al d\xeda        -0.7525 -0.16159
exp(modelo2multi.bin$coefficients)
##                           (Intercept) 
##                                0.8316 
##                               paisUru 
##                                1.6367 
##       escolmaerecat23cat2-high school 
##                                1.6835 
## escolmaerecat23cat3-elementary school 
##                                2.8534 
##        freqescovacat2-veces al d\xeda 
##                                0.7524 
##        freqescovacat3-veces al d\xeda 
##                                0.6332


modelo3multi.bin <- svyglm(prevoms ~ pais + escolmae13cat + freqescovacat, disenio_urubra, 
    family = quasibinomial())
summary(modelo3multi.bin)
## 
## Call:
## svyglm(formula = prevoms ~ pais + escolmae13cat + freqescovacat, 
##     disenio_urubra, family = quasibinomial())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##                                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                        -0.325      0.194   -1.67   0.0985 .  
## paisUru                             0.342      0.130    2.62   0.0105 *  
## escolmae13cat2-high school          0.537      0.243    2.21   0.0299 *  
## escolmae13cat3-Elementary School    1.134      0.174    6.52    7e-09 ***
## freqescovacat2-veces al d\xeda     -0.283      0.136   -2.08   0.0412 *  
## freqescovacat3-veces al d\xeda     -0.459      0.148   -3.09   0.0028 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 1.004)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo3multi.bin)
##                                     2.5 %   97.5 %
## (Intercept)                      -0.70653  0.05582
## paisUru                           0.08656  0.59768
## escolmae13cat2-high school        0.06140  1.01323
## escolmae13cat3-Elementary School  0.79289  1.47466
## freqescovacat2-veces al d\xeda   -0.55025 -0.01595
## freqescovacat3-veces al d\xeda   -0.74926 -0.16815
exp(modelo3multi.bin$coefficients)
##                      (Intercept)                          paisUru 
##                           0.7223                           1.4079 
##       escolmae13cat2-high school escolmae13cat3-Elementary School 
##                           1.7114                           3.1074 
##   freqescovacat2-veces al d\xeda   freqescovacat3-veces al d\xeda 
##                           0.7534                           0.6321
anova(modelo3multi.bin)
## Anova table:  (Rao-Scott LRT)
## svyglm(formula = prevoms ~ pais, disenio_urubra, family = quasibinomial())
##                stats   DEff     df ddf       p    
## pais            9.85   3.22   1.00  80   0.086 .  
## escolmae13cat 197.91   2.51   2.00  78 5.1e-11 ***
## freqescovacat  63.94   1.67   2.00  76 5.9e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

REGRESIÓN POISSON: 1.País 2.Escomaerecat23 3.Tipoescola 4.Freqescavacat




modelo4multi.poi <- svyglm(cpodoms ~ pais + escolmaerecat23cat + freqescovacat + 
    tipoesc, disenio_urubra, family = quasipoisson())
summary(modelo4multi.poi)
## 
## Call:
## svyglm(formula = cpodoms ~ pais + escolmaerecat23cat + freqescovacat + 
##     tipoesc, disenio_urubra, family = quasipoisson())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##                                       Estimate Std. Error t value Pr(>|t|)
## (Intercept)                            -0.2477     0.1223   -2.03   0.0463
## paisUru                                 0.2824     0.0653    4.32  4.7e-05
## escolmaerecat23cat2-high school         0.2291     0.1488    1.54   0.1278
## escolmaerecat23cat3-elementary school   0.4116     0.1721    2.39   0.0193
## freqescovacat2-veces al d\xeda         -0.0715     0.0809   -0.88   0.3795
## freqescovacat3-veces al d\xeda         -0.2334     0.0748   -3.12   0.0026
## tipoesc2-Publica                        0.4618     0.1075    4.30  5.2e-05
##                                          
## (Intercept)                           *  
## paisUru                               ***
## escolmaerecat23cat2-high school          
## escolmaerecat23cat3-elementary school *  
## freqescovacat2-veces al d\xeda           
## freqescovacat3-veces al d\xeda        ** 
## tipoesc2-Publica                      ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 2.068)
## 
## Number of Fisher Scoring iterations: 6
anova(modelo4multi.poi)
## Anova table:  (Rao-Scott LRT)
## svyglm(formula = cpodoms ~ pais, disenio_urubra, family = quasipoisson())
##                    stats   DEff     df ddf       p    
## pais                25.8   8.36   1.00  80   0.085 .  
## escolmaerecat23cat 353.4   5.69   2.00  78 2.8e-08 ***
## freqescovacat      143.6   4.64   2.00  76 2.4e-05 ***
## tipoesc             96.0   4.85   1.00  75 3.2e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
confint(modelo4multi.poi)
##                                          2.5 %    97.5 %
## (Intercept)                           -0.48740 -0.008086
## paisUru                                0.15427  0.410436
## escolmaerecat23cat2-high school       -0.06253  0.520721
## escolmaerecat23cat3-elementary school  0.07430  0.748827
## freqescovacat2-veces al d\xeda        -0.23011  0.087048
## freqescovacat3-veces al d\xeda        -0.38004 -0.086664
## tipoesc2-Publica                       0.25106  0.672458
exp(modelo4multi.poi$coefficients)
##                           (Intercept) 
##                                0.7806 
##                               paisUru 
##                                1.3262 
##       escolmaerecat23cat2-high school 
##                                1.2575 
## escolmaerecat23cat3-elementary school 
##                                1.5092 
##        freqescovacat2-veces al d\xeda 
##                                0.9310 
##        freqescovacat3-veces al d\xeda 
##                                0.7919 
##                      tipoesc2-Publica 
##                                1.5869


modelo5multi.poi <- svyglm(cpodoms ~ pais + escolmae13cat + freqescovacat + 
    tipoesc, disenio_urubra, family = quasipoisson())
summary(modelo5multi.poi)
## 
## Call:
## svyglm(formula = cpodoms ~ pais + escolmae13cat + freqescovacat + 
##     tipoesc, disenio_urubra, family = quasipoisson())
## 
## Survey design:
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## 
## Coefficients:
##                                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                       -0.3987     0.2015   -1.98  0.05149 .  
## paisUru                            0.2240     0.0703    3.19  0.00209 ** 
## escolmae13cat2-high school         0.3838     0.2309    1.66  0.10066    
## escolmae13cat3-Elementary School   0.6248     0.1782    3.51  0.00077 ***
## freqescovacat2-veces al d\xeda    -0.0724     0.0821   -0.88  0.38070    
## freqescovacat3-veces al d\xeda    -0.2310     0.0703   -3.29  0.00154 ** 
## tipoesc2-Publica                   0.3873     0.0928    4.17    8e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 2.04)
## 
## Number of Fisher Scoring iterations: 6
confint(modelo5multi.poi)
##                                     2.5 %    97.5 %
## (Intercept)                      -0.79350 -0.003829
## paisUru                           0.08631  0.361762
## escolmae13cat2-high school       -0.06877  0.836426
## escolmae13cat3-Elementary School  0.27551  0.974056
## freqescovacat2-veces al d\xeda   -0.23339  0.088549
## freqescovacat3-veces al d\xeda   -0.36871 -0.093311
## tipoesc2-Publica                  0.20541  0.569286
exp(modelo5multi.poi$coefficients)
##                      (Intercept)                          paisUru 
##                           0.6712                           1.2511 
##       escolmae13cat2-high school escolmae13cat3-Elementary School 
##                           1.4679                           1.8678 
##   freqescovacat2-veces al d\xeda   freqescovacat3-veces al d\xeda 
##                           0.9301                           0.7937 
##                 tipoesc2-Publica 
##                           1.4731
anova(modelo5multi.poi)
## Anova table:  (Rao-Scott LRT)
## svyglm(formula = cpodoms ~ pais, disenio_urubra, family = quasipoisson())
##               stats   DEff     df ddf       p    
## pais           25.8   8.36   1.00  80   0.085 .  
## escolmae13cat 430.6   8.03   2.00  78 1.7e-07 ***
## freqescovacat 140.8   4.28   2.00  76 1.0e-05 ***
## tipoesc        64.9   3.51   1.00  75 5.5e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1