# Load packages
# Core
library(tidyverse)
library(tidyquant)
Collect individual returns into a portfolio by assigning a weight to each stock
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("NVDA", "AAPL", "NFLX", "MSFT", "TSLA")
prices <- tq_get (x = symbols,
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "quarterly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# Symbols
symbol <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "NVDA" "AAPL" "NFLX" "MSFT" "TSLA"
# Weights
weights <- c(0.3, 0.3, 0.25, 0.25, 0.2)
weights
## [1] 0.30 0.30 0.25 0.25 0.20
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 NVDA 0.3
## 2 AAPL 0.3
## 3 NFLX 0.25
## 4 MSFT 0.25
## 5 TSLA 0.2
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months")
portfolio_returns_tbl
## # A tibble: 20 × 2
## date portfolio.returns
## <date> <dbl>
## 1 2013-03-28 0.182
## 2 2013-06-28 0.282
## 3 2013-09-30 0.295
## 4 2013-12-31 0.0855
## 5 2014-03-31 0.102
## 6 2014-06-30 0.161
## 7 2014-09-30 0.0617
## 8 2014-12-31 -0.0300
## 9 2015-03-31 0.0365
## 10 2015-06-30 0.199
## 11 2015-09-30 0.0359
## 12 2015-12-31 0.152
## 13 2016-03-31 0.000393
## 14 2016-06-30 -0.0145
## 15 2016-09-30 0.207
## 16 2016-12-30 0.229
## 17 2017-03-31 0.186
## 18 2017-06-30 0.155
## 19 2017-09-29 0.143
## 20 2017-12-29 0.0849
portfolio_returns_tbl %>%
ggplot(mapping = aes(x = portfolio.returns)) +
geom_histogram(fill = "cornflowerblue", binwidth = 0.015) +
geom_density() +
# Formatting
scale_x_continuous(labels = scales::percent_format()) +
labs(x = "returns",
y = "distribution",
title = "Portfolio Returns Distribution")
Based off of the chart it seems I should expect a typical quarter return of 15%. The bar is the highest around there, and we see the line in peaked out around 15% as well.