Conover-Iman test
The Conover-Iman test is a post hoc test that perform pairwise comparisons using the same rankings used in the Kruskal-Wallis test (as opposed to just performing a bog-standard rank sum test for each pairwise comparison), and uses a pooled variance estimate implied by the Kruskal-Wallis test’s null hypothesis.
A similar procedure is the Dunn’s test. Dunn’s test is based on an asymptotic z distribution, while the Conover-Iman test is based on an asymptotic t distribution.
Plant Growth Data
##
## Kruskal-Wallis rank sum test
##
## data: weight by group
## Kruskal-Wallis chi-squared = 7.9882, df = 2, p-value = 0.01842
## Kruskal-Wallis rank sum test
##
## data: x and group
## Kruskal-Wallis chi-squared = 7.9882, df = 2, p-value = 0.02
##
##
## Comparison of x by group
## (No adjustment)
## Col Mean-|
## Row Mean | ctrl trt1
## ---------+----------------------
## trt1 | 1.267026
## | 0.1080
## |
## trt2 | -1.914937 -3.181964
## | 0.0331 0.0018*
##
## alpha = 0.05
## Reject Ho if p <= alpha/2
homecare data
Example based on home care data from Dunn (1964)
## occupation eligibility
## 1 1 Eligible
## 2 1 Eligible
## 3 1 Eligible
## 4 2 Eligible
## 5 2 Eligible
## 6 2 Eligible
## occupation Eligible No responsible person Responsible person unable
## 1 3 0 1
## 2 12 4 2
## 3 10 7 4
## 4 20 10 11
## 5 47 9 10
## 6 74 12 21
## 7 62 26 38
## Kruskal-Wallis rank sum test
##
## data: x and group
## Kruskal-Wallis chi-squared = 4.2226, df = 2, p-value = 0.12
##
##
## Comparison of x by group
## (Holm-Šidák)
## Col Mean-|
## Row Mean | Eligible No respo
## ---------+----------------------
## No respo | -0.156426
## | 0.4379
## |
## Responsi | -2.028138 -1.445439
## | 0.0635 0.1436
##
##
## List of pairwise comparisons: t statistic (adjusted p-value)
## ----------------------------------------------------------------------
## Eligible - No responsible person : -0.156426 (0.4379)
## Eligible - Responsible person unable : -2.028138 (0.0635)
## No responsible person - Responsible person unable : -1.445439 (0.1436)
##
## alpha = 0.05
## Reject Ho if p <= alpha/2