Desarrollar ejercicios para encontrar la probabilidad de eventos de un espacio muestral.
Construir ejercicios de probabilidad conforme a partir de datos conforme la teoría de probabilidad.
A partir de un conjunto de datos generados estimar y determinar las probabilidades.
Para cuando los espacios muestrales tienen un espacio finito o un número de elementos finito, la probabilidad de ocurrencia de un evento que resulta de tal experimento estadístico se evalúa utilizando un conjunto de números reales denominados pesos o probabilidades, que van de 0 a 1.(Walpole, Myers, and Myers 2012).
Para todo punto en el espacio muestral se asigna una probabilidad tal que la suma de todas las probabilidades es 1. (Walpole, Myers, and Myers 2012).
Si se tiene certeza para creer que al llevar a cabo el experimento es bastante probable que ocurra cierto punto muestral, le tendríamos que asignar a éste una probabilidad cercana a uno. Por el contrario, si se cree que no hay probabilidades de que ocurra cierto punto muestral, se tendría que asignar a éste una probabilidad cercana a cero.
En un espacio muestral en donde todos los puntos muestrales tienen la misma oportunidad de ocurrencia, por lo tanto, se les asignan probabilidades iguales.
A los puntos fuera del espacio muestral, es decir, a los eventos simples que no tienen posibilidades de ocurrir, se les asigna una probabilidad de cero.
Entonces: La probabilidad de un evento A debe estar entre cero y uno
\[ 0 \le P(A) \le 1 \]
La probabilidad de todo el espacio muestral S debe ser uno \[ P(S) = 1 \]
La probabilidad de que no ocurra un evento es cero
\[ p(\phi) = 0 \]
Ejemplo: lanzar un dado. La probabilidad de que caiga un 1, un 2, un 3 un 4 un 5 un 6 es la misma para cada elemento. Siendo S el espacio muestral, cual es la probabilidad de que al lanzar un dado a una mesa, el valor del mismo cara arriba sea un 5?, y ¿cuál es la probabilidad de que sea un 7?
¿Cuántas veces está el 5 en el espacio muestral S?. Una sola vez.
¿Cuántas veces está el 7 en el espacio muestral S?. Ninguna
Entonces dividir el número de ocurrencias del 5 entre el número total de elementos N.
\[ prob = \frac{n}{N} \]
En términos porcentuales sería:
\[ prob = \frac{n}{N} \times 100 \]
dado <- c(1,2,3,4,5,6)
N <- length(dado)
# N
filtro <- subset(dado, dado == 5)
filtro
## [1] 5
n <- length(filtro)
# n
paste("La probabilidad de que al lanzar el dado sea cinco es : ", n , " de entre", N , " elementos que existen en el espacio muestral. Representa: ", round(n/N * 100,2), "%")
## [1] "La probabilidad de que al lanzar el dado sea cinco es : 1 de entre 6 elementos que existen en el espacio muestral. Representa: 16.67 %"
Se cargan librerías necesarias para distintos ejercicios
library(gtools) # Comnaciones ypermutaciones
library(dplyr) # Procesar datos mutate, select ...
library(fdth) # Tablas de frecuencias
¿Que probabilidad existe de que al lanzar los dos dados de que salga 10 la suma de los valores de los dos dados?.
A partir de un vector dado del 1 al 6 que son los valores del dado generar permutaciones en donde se puedan repetir los valores del dado.
Poner nombre con la función names() nombres de columnas al conjunto de datos lanzar_dados.
Con la función cbind() se agrega una columna al conjunto de datos.
Con apply() se hace la suma de cada renglón del conjunto de datos lanzar_dados.
dado <- c(1,2,3,4,5,6)
lanzar_dados <- data.frame(permutations(n=6, r = 2, v = dado, repeats.allowed = TRUE))
names(lanzar_dados) <- c("dado1", "dado2")
lanzar_dados <- cbind(lanzar_dados, suma = apply(X = lanzar_dados, MARGIN = 1, FUN = sum))
lanzar_dados
## dado1 dado2 suma
## 1 1 1 2
## 2 1 2 3
## 3 1 3 4
## 4 1 4 5
## 5 1 5 6
## 6 1 6 7
## 7 2 1 3
## 8 2 2 4
## 9 2 3 5
## 10 2 4 6
## 11 2 5 7
## 12 2 6 8
## 13 3 1 4
## 14 3 2 5
## 15 3 3 6
## 16 3 4 7
## 17 3 5 8
## 18 3 6 9
## 19 4 1 5
## 20 4 2 6
## 21 4 3 7
## 22 4 4 8
## 23 4 5 9
## 24 4 6 10
## 25 5 1 6
## 26 5 2 7
## 27 5 3 8
## 28 5 4 9
## 29 5 5 10
## 30 5 6 11
## 31 6 1 7
## 32 6 2 8
## 33 6 3 9
## 34 6 4 10
## 35 6 5 11
## 36 6 6 12
nrow(subset(lanzar_dados, lanzar_dados[,3] < 9)) / 36
## [1] 0.7222222
subset(lanzar_dados, lanzar_dados[,3] < 9)
## dado1 dado2 suma
## 1 1 1 2
## 2 1 2 3
## 3 1 3 4
## 4 1 4 5
## 5 1 5 6
## 6 1 6 7
## 7 2 1 3
## 8 2 2 4
## 9 2 3 5
## 10 2 4 6
## 11 2 5 7
## 12 2 6 8
## 13 3 1 4
## 14 3 2 5
## 15 3 3 6
## 16 3 4 7
## 17 3 5 8
## 19 4 1 5
## 20 4 2 6
## 21 4 3 7
## 22 4 4 8
## 25 5 1 6
## 26 5 2 7
## 27 5 3 8
## 31 6 1 7
## 32 6 2 8
Encontrar en cuantas ocasiones la suma de los dos dados es diez, se hace con la función subset()
sumados <- 10 # Puede ser cualquier valor
N <- nrow(lanzar_dados) # Cantidad de obervaciones
filtro <- subset(lanzar_dados, suma == sumados)
filtro
## dado1 dado2 suma
## 24 4 6 10
## 29 5 5 10
## 34 6 4 10
n <- nrow(filtro) # Cantidad de eventos que cumplen una condición
n
## [1] 3
paste("Existen ", n, " alternativas de que la suma de lanzamiento de dos dados sea ", sumados, " de un total de ",N, " lo que representa ", round(n/N * 100,2), "%", "probable ")
## [1] "Existen 3 alternativas de que la suma de lanzamiento de dos dados sea 10 de un total de 36 lo que representa 8.33 % probable "
Se reparten dos barajas de tipo inglesa y el jugador debe sumar los valores numéricos de las dos barajas.
La pregunta es: ¿qué probabilidad existe de que al recibir dos cartas de una baraja de 52 cartas modalidad inglesa la suma de las dos cartas sea 20?
El As vale 1 punto
Los valores numérico valen lo que indica la carta
Los monos (J, Q y K ) valen 10 puntos
Reutilizar código que existe en “https://raw.githubusercontent.com/rpizarrog/Probabilidad-y-EstadIstica-VIRTUAL-DISTANCIA/main/funciones/misfunciones.R”
# source("funciones/mis.funciones.r")
source ("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/Enero%20Junio%202022/funciones/misfunciones.R")
El espacio muestral de todas las cartas almacenada en una variable llamada S.casos.
S.casos <- data.frame(permutations(13, 2, baraja, repeats.allowed = TRUE))
names(S.casos) <- c("C1", "C2")
S.casos
## C1 C2
## 1 10 10
## 2 10 2
## 3 10 3
## 4 10 4
## 5 10 5
## 6 10 6
## 7 10 7
## 8 10 8
## 9 10 9
## 10 10 A
## 11 10 J
## 12 10 K
## 13 10 Q
## 14 2 10
## 15 2 2
## 16 2 3
## 17 2 4
## 18 2 5
## 19 2 6
## 20 2 7
## 21 2 8
## 22 2 9
## 23 2 A
## 24 2 J
## 25 2 K
## 26 2 Q
## 27 3 10
## 28 3 2
## 29 3 3
## 30 3 4
## 31 3 5
## 32 3 6
## 33 3 7
## 34 3 8
## 35 3 9
## 36 3 A
## 37 3 J
## 38 3 K
## 39 3 Q
## 40 4 10
## 41 4 2
## 42 4 3
## 43 4 4
## 44 4 5
## 45 4 6
## 46 4 7
## 47 4 8
## 48 4 9
## 49 4 A
## 50 4 J
## 51 4 K
## 52 4 Q
## 53 5 10
## 54 5 2
## 55 5 3
## 56 5 4
## 57 5 5
## 58 5 6
## 59 5 7
## 60 5 8
## 61 5 9
## 62 5 A
## 63 5 J
## 64 5 K
## 65 5 Q
## 66 6 10
## 67 6 2
## 68 6 3
## 69 6 4
## 70 6 5
## 71 6 6
## 72 6 7
## 73 6 8
## 74 6 9
## 75 6 A
## 76 6 J
## 77 6 K
## 78 6 Q
## 79 7 10
## 80 7 2
## 81 7 3
## 82 7 4
## 83 7 5
## 84 7 6
## 85 7 7
## 86 7 8
## 87 7 9
## 88 7 A
## 89 7 J
## 90 7 K
## 91 7 Q
## 92 8 10
## 93 8 2
## 94 8 3
## 95 8 4
## 96 8 5
## 97 8 6
## 98 8 7
## 99 8 8
## 100 8 9
## 101 8 A
## 102 8 J
## 103 8 K
## 104 8 Q
## 105 9 10
## 106 9 2
## 107 9 3
## 108 9 4
## 109 9 5
## 110 9 6
## 111 9 7
## 112 9 8
## 113 9 9
## 114 9 A
## 115 9 J
## 116 9 K
## 117 9 Q
## 118 A 10
## 119 A 2
## 120 A 3
## 121 A 4
## 122 A 5
## 123 A 6
## 124 A 7
## 125 A 8
## 126 A 9
## 127 A A
## 128 A J
## 129 A K
## 130 A Q
## 131 J 10
## 132 J 2
## 133 J 3
## 134 J 4
## 135 J 5
## 136 J 6
## 137 J 7
## 138 J 8
## 139 J 9
## 140 J A
## 141 J J
## 142 J K
## 143 J Q
## 144 K 10
## 145 K 2
## 146 K 3
## 147 K 4
## 148 K 5
## 149 K 6
## 150 K 7
## 151 K 8
## 152 K 9
## 153 K A
## 154 K J
## 155 K K
## 156 K Q
## 157 Q 10
## 158 Q 2
## 159 Q 3
## 160 Q 4
## 161 Q 5
## 162 Q 6
## 163 Q 7
## 164 Q 8
## 165 Q 9
## 166 Q A
## 167 Q J
## 168 Q K
## 169 Q Q
Total de casos del espacio muestral:
N <- nrow(S.casos) # El número de opciones
N
## [1] 169
Determinar columna para suma de las dos cartas
S.casos <- f.sumar.cartas(S.casos)
S.casos
## C1 C2 valor1 valor2 suma
## 1 10 10 10 10 20
## 2 10 2 10 2 12
## 3 10 3 10 3 13
## 4 10 4 10 4 14
## 5 10 5 10 5 15
## 6 10 6 10 6 16
## 7 10 7 10 7 17
## 8 10 8 10 8 18
## 9 10 9 10 9 19
## 10 10 A 10 1 11
## 11 10 J 10 10 20
## 12 10 K 10 10 20
## 13 10 Q 10 10 20
## 14 2 10 2 10 12
## 15 2 2 2 2 4
## 16 2 3 2 3 5
## 17 2 4 2 4 6
## 18 2 5 2 5 7
## 19 2 6 2 6 8
## 20 2 7 2 7 9
## 21 2 8 2 8 10
## 22 2 9 2 9 11
## 23 2 A 2 1 3
## 24 2 J 2 10 12
## 25 2 K 2 10 12
## 26 2 Q 2 10 12
## 27 3 10 3 10 13
## 28 3 2 3 2 5
## 29 3 3 3 3 6
## 30 3 4 3 4 7
## 31 3 5 3 5 8
## 32 3 6 3 6 9
## 33 3 7 3 7 10
## 34 3 8 3 8 11
## 35 3 9 3 9 12
## 36 3 A 3 1 4
## 37 3 J 3 10 13
## 38 3 K 3 10 13
## 39 3 Q 3 10 13
## 40 4 10 4 10 14
## 41 4 2 4 2 6
## 42 4 3 4 3 7
## 43 4 4 4 4 8
## 44 4 5 4 5 9
## 45 4 6 4 6 10
## 46 4 7 4 7 11
## 47 4 8 4 8 12
## 48 4 9 4 9 13
## 49 4 A 4 1 5
## 50 4 J 4 10 14
## 51 4 K 4 10 14
## 52 4 Q 4 10 14
## 53 5 10 5 10 15
## 54 5 2 5 2 7
## 55 5 3 5 3 8
## 56 5 4 5 4 9
## 57 5 5 5 5 10
## 58 5 6 5 6 11
## 59 5 7 5 7 12
## 60 5 8 5 8 13
## 61 5 9 5 9 14
## 62 5 A 5 1 6
## 63 5 J 5 10 15
## 64 5 K 5 10 15
## 65 5 Q 5 10 15
## 66 6 10 6 10 16
## 67 6 2 6 2 8
## 68 6 3 6 3 9
## 69 6 4 6 4 10
## 70 6 5 6 5 11
## 71 6 6 6 6 12
## 72 6 7 6 7 13
## 73 6 8 6 8 14
## 74 6 9 6 9 15
## 75 6 A 6 1 7
## 76 6 J 6 10 16
## 77 6 K 6 10 16
## 78 6 Q 6 10 16
## 79 7 10 7 10 17
## 80 7 2 7 2 9
## 81 7 3 7 3 10
## 82 7 4 7 4 11
## 83 7 5 7 5 12
## 84 7 6 7 6 13
## 85 7 7 7 7 14
## 86 7 8 7 8 15
## 87 7 9 7 9 16
## 88 7 A 7 1 8
## 89 7 J 7 10 17
## 90 7 K 7 10 17
## 91 7 Q 7 10 17
## 92 8 10 8 10 18
## 93 8 2 8 2 10
## 94 8 3 8 3 11
## 95 8 4 8 4 12
## 96 8 5 8 5 13
## 97 8 6 8 6 14
## 98 8 7 8 7 15
## 99 8 8 8 8 16
## 100 8 9 8 9 17
## 101 8 A 8 1 9
## 102 8 J 8 10 18
## 103 8 K 8 10 18
## 104 8 Q 8 10 18
## 105 9 10 9 10 19
## 106 9 2 9 2 11
## 107 9 3 9 3 12
## 108 9 4 9 4 13
## 109 9 5 9 5 14
## 110 9 6 9 6 15
## 111 9 7 9 7 16
## 112 9 8 9 8 17
## 113 9 9 9 9 18
## 114 9 A 9 1 10
## 115 9 J 9 10 19
## 116 9 K 9 10 19
## 117 9 Q 9 10 19
## 118 A 10 1 10 11
## 119 A 2 1 2 3
## 120 A 3 1 3 4
## 121 A 4 1 4 5
## 122 A 5 1 5 6
## 123 A 6 1 6 7
## 124 A 7 1 7 8
## 125 A 8 1 8 9
## 126 A 9 1 9 10
## 127 A A 1 1 2
## 128 A J 1 10 11
## 129 A K 1 10 11
## 130 A Q 1 10 11
## 131 J 10 10 10 20
## 132 J 2 10 2 12
## 133 J 3 10 3 13
## 134 J 4 10 4 14
## 135 J 5 10 5 15
## 136 J 6 10 6 16
## 137 J 7 10 7 17
## 138 J 8 10 8 18
## 139 J 9 10 9 19
## 140 J A 10 1 11
## 141 J J 10 10 20
## 142 J K 10 10 20
## 143 J Q 10 10 20
## 144 K 10 10 10 20
## 145 K 2 10 2 12
## 146 K 3 10 3 13
## 147 K 4 10 4 14
## 148 K 5 10 5 15
## 149 K 6 10 6 16
## 150 K 7 10 7 17
## 151 K 8 10 8 18
## 152 K 9 10 9 19
## 153 K A 10 1 11
## 154 K J 10 10 20
## 155 K K 10 10 20
## 156 K Q 10 10 20
## 157 Q 10 10 10 20
## 158 Q 2 10 2 12
## 159 Q 3 10 3 13
## 160 Q 4 10 4 14
## 161 Q 5 10 5 15
## 162 Q 6 10 6 16
## 163 Q 7 10 7 17
## 164 Q 8 10 8 18
## 165 Q 9 10 9 19
## 166 Q A 10 1 11
## 167 Q J 10 10 20
## 168 Q K 10 10 20
## 169 Q Q 10 10 20
Nuevamente la pregunta es: ¿qué probabilidad existe de que al recibir dos cartas de una baraja de 52 cartas modalidad inglesa la suma de las dos cartas sea 20?
sumados <- 20
filtro <- subset(S.casos, suma == sumados)
n <- nrow(filtro)
filtro
## C1 C2 valor1 valor2 suma
## 1 10 10 10 10 20
## 11 10 J 10 10 20
## 12 10 K 10 10 20
## 13 10 Q 10 10 20
## 131 J 10 10 10 20
## 141 J J 10 10 20
## 142 J K 10 10 20
## 143 J Q 10 10 20
## 144 K 10 10 10 20
## 154 K J 10 10 20
## 155 K K 10 10 20
## 156 K Q 10 10 20
## 157 Q 10 10 10 20
## 167 Q J 10 10 20
## 168 Q K 10 10 20
## 169 Q Q 10 10 20
paste("De las ", N, "alternativas, ", " existe ", n, " posibilidades de que la suma de las dos cartas repartidas sea", sumados, " ,que representa el ", round(n/N * 100, 2), "%")
## [1] "De las 169 alternativas, existe 16 posibilidades de que la suma de las dos cartas repartidas sea 20 ,que representa el 9.47 %"
La ruleta tiene 39 números en colores negro y rojo ¿que probabilidad existe de que al dar vuelta se detenga en un valor en específico?
numeros <- 1:36
colores <- c("Negro", "Rojo")
S.ruleta <- c(paste(as.character(1:36), "Rojo"),
paste(as.character(1:36), "Negro"))
S.ruleta
## [1] "1 Rojo" "2 Rojo" "3 Rojo" "4 Rojo" "5 Rojo" "6 Rojo"
## [7] "7 Rojo" "8 Rojo" "9 Rojo" "10 Rojo" "11 Rojo" "12 Rojo"
## [13] "13 Rojo" "14 Rojo" "15 Rojo" "16 Rojo" "17 Rojo" "18 Rojo"
## [19] "19 Rojo" "20 Rojo" "21 Rojo" "22 Rojo" "23 Rojo" "24 Rojo"
## [25] "25 Rojo" "26 Rojo" "27 Rojo" "28 Rojo" "29 Rojo" "30 Rojo"
## [31] "31 Rojo" "32 Rojo" "33 Rojo" "34 Rojo" "35 Rojo" "36 Rojo"
## [37] "1 Negro" "2 Negro" "3 Negro" "4 Negro" "5 Negro" "6 Negro"
## [43] "7 Negro" "8 Negro" "9 Negro" "10 Negro" "11 Negro" "12 Negro"
## [49] "13 Negro" "14 Negro" "15 Negro" "16 Negro" "17 Negro" "18 Negro"
## [55] "19 Negro" "20 Negro" "21 Negro" "22 Negro" "23 Negro" "24 Negro"
## [61] "25 Negro" "26 Negro" "27 Negro" "28 Negro" "29 Negro" "30 Negro"
## [67] "31 Negro" "32 Negro" "33 Negro" "34 Negro" "35 Negro" "36 Negro"
¿Cuál es la la probabilidad de que al darle vuelta la ruleta se detenga en un valor específico es por ejemplo en la casilla “20 Negro”.
N <- length(S.ruleta)
n <- 1
paste ("La probabilidad de que caiga un valor en la ruleta de ", N , " alternativas es: ", round(n/N * 100, 2), "%")
## [1] "La probabilidad de que caiga un valor en la ruleta de 72 alternativas es: 1.39 %"
El juego de dominó consiste en que de una cantidad de 28 fichas se reparten siete de ellas a cada jugador.
Uno de los variantes del dominó es contar los puntos de cada ficha, siendo los puntos la cantidad de puntos negros que tiene cada ficha.
Para este ejercicio se pide:
¿Cual es la probabilidad de que la suma de puntos de las siete fichas repartidas sea manor a 15 puntos?
¿Cuál es la probabilidad de que la suma de los puntos de las siete fichas sea mayor a 60 puntos?
¿Cual es la probabilidad de que al repartir siete fichas de dominó la suma total esté 30 y 40 puntos?. Siendo los puntos los puntos negros de cada ficha?.
¿Cual será el rango o intervalo de clase conforme a la suma de puntos existe mayor probabilidad de obtener esos puntos?
Primero se construye el espacio muestral a partir de funciones ya preparadas que se encuentran en la dirección https://github.com/rpizarrog/Probabilidad-y-EstadIstica-VIRTUAL-DISTANCIA/blob/main/funciones/funciones.domino.r
#source("funciones/funciones.domino.r")
source("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/Enero%20Junio%202022/funciones/funciones.domino.r")
Se muestra sólo las primeras 20 observaciones y las últimas 20 de todas las posibles combinaciones de siete fichas en siete fichas.
El campo suma es la cantidad de puntos de las siete fichas.
head(fichas, 20)
## F1 F2 F3 F4 F5 F6 F7 suma
## 1 00 01 02 03 04 05 06 21
## 2 00 01 02 03 04 05 11 17
## 3 00 01 02 03 04 05 12 18
## 4 00 01 02 03 04 05 13 19
## 5 00 01 02 03 04 05 14 20
## 6 00 01 02 03 04 05 15 21
## 7 00 01 02 03 04 05 16 22
## 8 00 01 02 03 04 05 22 19
## 9 00 01 02 03 04 05 23 20
## 10 00 01 02 03 04 05 24 21
## 11 00 01 02 03 04 05 25 22
## 12 00 01 02 03 04 05 26 23
## 13 00 01 02 03 04 05 33 21
## 14 00 01 02 03 04 05 34 22
## 15 00 01 02 03 04 05 35 23
## 16 00 01 02 03 04 05 36 24
## 17 00 01 02 03 04 05 44 23
## 18 00 01 02 03 04 05 45 24
## 19 00 01 02 03 04 05 46 25
## 20 00 01 02 03 04 05 55 25
tail(fichas, 20)
## F1 F2 F3 F4 F5 F6 F7 suma
## 1184021 34 35 44 45 46 55 66 64
## 1184022 34 35 44 45 46 56 66 65
## 1184023 34 35 44 45 55 56 66 65
## 1184024 34 35 44 46 55 56 66 66
## 1184025 34 35 45 46 55 56 66 67
## 1184026 34 36 44 45 46 55 56 64
## 1184027 34 36 44 45 46 55 66 65
## 1184028 34 36 44 45 46 56 66 66
## 1184029 34 36 44 45 55 56 66 66
## 1184030 34 36 44 46 55 56 66 67
## 1184031 34 36 45 46 55 56 66 68
## 1184032 34 44 45 46 55 56 66 67
## 1184033 35 36 44 45 46 55 56 65
## 1184034 35 36 44 45 46 55 66 66
## 1184035 35 36 44 45 46 56 66 67
## 1184036 35 36 44 45 55 56 66 67
## 1184037 35 36 44 46 55 56 66 68
## 1184038 35 36 45 46 55 56 66 69
## 1184039 35 44 45 46 55 56 66 68
## 1184040 36 44 45 46 55 56 66 69
Se determina la cantidad de combinaciones posibles en grupos de siete fichas de dominó
N <- nrow(fichas)
N
## [1] 1184040
# Se puede usar fórmua de combinaciones
f.n.combinaciones(28,7)
## [1] 1184040
Se pueden repartir siete fichas a partir de una simulación.
mis.fichas <- f.repartir.fichas.domino(fichas)
mis.fichas
## F1 F2 F3 F4 F5 F6 F7 suma
## 489016 01 12 13 16 26 33 46 39
Para describir 1184040 de registros lo mejor es representarlo con un histograma utilizado la variable de interés suma de las fichas.
hist(fichas$suma, main="Puntos en fichas de dominó", xlab = "Suma")
Y se puede construir clases por medio de la función fdt() para determinar tablas de frecuencia
tabla <- fdt(x = fichas$suma, start = 15, end =75, h = 5)
tabla
## Class limits f rf rf(%) cf cf(%)
## [15,20) 255 0.00 0.02 255 0.02
## [20,25) 5459 0.00 0.46 5714 0.48
## [25,30) 37727 0.03 3.19 43441 3.67
## [30,35) 129100 0.11 10.90 172541 14.57
## [35,40) 258058 0.22 21.79 430599 36.37
## [40,45) 322842 0.27 27.27 753441 63.63
## [45,50) 258058 0.22 21.79 1011499 85.43
## [50,55) 129100 0.11 10.90 1140599 96.33
## [55,60) 37727 0.03 3.19 1178326 99.52
## [60,65) 5459 0.00 0.46 1183785 99.98
## [65,70) 255 0.00 0.02 1184040 100.00
## [70,75) 0 0.00 0.00 1184040 100.00
¿Cual es la probabilidad de que la suma de puntos de las siete fichas repartidas sea menor o igual a 15 puntos?
filtro <- filter(fichas, suma <=15)
filtro
## F1 F2 F3 F4 F5 F6 F7 suma
## 1 00 01 02 03 04 11 12 15
## 2 00 01 02 03 11 12 13 15
## 3 00 01 02 03 11 12 22 15
n<-nrow(filtro)
paste("Existe ", n, "eventos en donde los puntos sumados de fichas de dominó es menor o igual a 15, de un total de ", N , " alternativas. Lo que representa una probabilidad del ", round(n/N*100,4),"%")
## [1] "Existe 3 eventos en donde los puntos sumados de fichas de dominó es menor o igual a 15, de un total de 1184040 alternativas. Lo que representa una probabilidad del 3e-04 %"
¿Cuál es la probabilidad de que la suma de los puntos de las siete fichas sea mayor a 60 puntos?
filtro <- filter(fichas, suma > 60)
head(filtro)
## F1 F2 F3 F4 F5 F6 F7 suma
## 1 00 36 45 46 55 56 66 61
## 2 01 26 36 46 55 56 66 61
## 3 01 26 45 46 55 56 66 61
## 4 01 35 36 46 55 56 66 61
## 5 01 35 45 46 55 56 66 61
## 6 01 36 44 46 55 56 66 61
n<-nrow(filtro)
paste("Existe ", n, "eventos en donde los puntos sumados de fichas de dominó es mayor a 60, de un total de ", N , " alternativas. Lo que representa una probabilidad del ", round(n/N*100,4),"%")
## [1] "Existe 3427 eventos en donde los puntos sumados de fichas de dominó es mayor a 60, de un total de 1184040 alternativas. Lo que representa una probabilidad del 0.2894 %"
¿Cual es la probabilidad de que al repartir siete fichas de dominó la suma total esté 30 y 40 puntos?. Siendo los puntos los puntos negros de cada ficha?.
filtro <- filter(fichas, suma >= 30 & suma <= 40)
head(filtro)
## F1 F2 F3 F4 F5 F6 F7 suma
## 1 00 01 02 03 04 26 66 30
## 2 00 01 02 03 04 35 66 30
## 3 00 01 02 03 04 36 56 30
## 4 00 01 02 03 04 36 66 31
## 5 00 01 02 03 04 44 66 30
## 6 00 01 02 03 04 45 56 30
n<-nrow(filtro)
paste("Existe ", n, "eventos en donde los puntos sumados de fichas de dominó son mayor o igual a 30 y menor o igual a 40, de un total de ", N , " alternativas. Lo que representa una probabilidad del ", round(n/N*100,4),"%")
## [1] "Existe 450520 eventos en donde los puntos sumados de fichas de dominó son mayor o igual a 30 y menor o igual a 40, de un total de 1184040 alternativas. Lo que representa una probabilidad del 38.0494 %"
¿Cual será el rango o intervalo de clase conforme a la suma de puntos de las siete fichas repartidas de dominó en donde existe mayor probabilidad de obtener esos puntos?
tabla # escribir la tabla para analizarla
## Class limits f rf rf(%) cf cf(%)
## [15,20) 255 0.00 0.02 255 0.02
## [20,25) 5459 0.00 0.46 5714 0.48
## [25,30) 37727 0.03 3.19 43441 3.67
## [30,35) 129100 0.11 10.90 172541 14.57
## [35,40) 258058 0.22 21.79 430599 36.37
## [40,45) 322842 0.27 27.27 753441 63.63
## [45,50) 258058 0.22 21.79 1011499 85.43
## [50,55) 129100 0.11 10.90 1140599 96.33
## [55,60) 37727 0.03 3.19 1178326 99.52
## [60,65) 5459 0.00 0.46 1183785 99.98
## [65,70) 255 0.00 0.02 1184040 100.00
## [70,75) 0 0.00 0.00 1184040 100.00
Sería el rango de 40 a 45, debido a que es la clase con más frecuencia en entre todas las sumas de las fichas de dominó, ocurriendo 322842 veces en ese rango, ocupando el 27.27% de la frecuencia total.
¿Cómo se determina probabilidad de eventos de un espacio muestral, y que valores puede tener una probabilidad?
En un espacio muestral, la probabilidad de eventos se calcula con la siguiente fórmula:
\[Probabilidad\ de\ evento\ = \frac{cantidad\ de\ veces\ que\ ocurre}{total\ de\ eventos} \times{100}\]
La probabilidad del evento es igual a la cantidad de veces que ese evento se puede cumplir entre el total de eventos, y para conseguir el valor en porcentaje, se multiplica por 100.
¿Para que sirve estimar probabilidades?
Las probabilidades nos ayudan a saber qué eventos tienden a ocurrir más, podría ser para estudiar comportamientos de algún fenómeno en específico, las casas de apuestas tienden a usarlo para conseguir ganancias, otros usos pueden ser la confianza de que un evento pueda o no ocurrir.
¿Podrá haber probabilidades negativas?, justifique SI o NO ?
No, no creo que puedan existir probabilidades negativas, bajo este contexto, no se le puede dar una interpretación de una probabilidad negativa; si las probabilidad positiva es la probabilidad de que un evento efectivamente ocurra, no puede ser el opuesto porque el opuesto de que algo ocurra, es que no ocurra, y también eso tiene una probabilidad positiva. Por tanto, no es posible interpretar una probabilidad negativa.
Describa y justifique su respuesta sobre que es más probable de estas tres cuestiones:
Una moneda solo tiene dos caras, por tanto, en un lanzamiento, en solo en uno de los dos puede dar águila, así que es un evento cada dos en la teoría, lo que da 1/2, que es 0.5, es decir, un 50% de probabilidad de que eso ocurra.
El siguiente bloque de código en R, lo primero que hago es crear a tupla.cartas, para alojar las sumas con una permutación, en un data frame para poder usar un subset con ciertas columnas.
El subset lo uso para encontrar en cuántas ocasiones la suma de las cartas dio un valor entre 8 y 12, y solo necesito contar en cuántas ocasiones esto fue fue lo que ocurrió.
Y solo necesito encontrar el porcentaje de veces en la que ocurrió, que fue con la formula antes mencionada.
tupla.cartas = data.frame(permutations(13, 2, baraja, repeats.allowed = TRUE))
names(tupla.cartas) = c("C1", "C2")
N = nrow(tupla.cartas)
tupla.cartas = f.sumar.cartas(tupla.cartas)
resultado = subset(tupla.cartas, 8 <= tupla.cartas$suma & tupla.cartas$suma <= 12)
head(resultado, 10)
## C1 C2 valor1 valor2 suma
## 2 10 2 10 2 12
## 10 10 A 10 1 11
## 14 2 10 2 10 12
## 19 2 6 2 6 8
## 20 2 7 2 7 9
## 21 2 8 2 8 10
## 22 2 9 2 9 11
## 24 2 J 2 10 12
## 25 2 K 2 10 12
## 26 2 Q 2 10 12
tail(resultado, 10)
## C1 C2 valor1 valor2 suma
## 126 A 9 1 9 10
## 128 A J 1 10 11
## 129 A K 1 10 11
## 130 A Q 1 10 11
## 132 J 2 10 2 12
## 140 J A 10 1 11
## 145 K 2 10 2 12
## 153 K A 10 1 11
## 158 Q 2 10 2 12
## 166 Q A 10 1 11
frecuencia.porcentaje = nrow(resultado) * 100 / N
paste("La probabilidad de que la suma de los puntos de dos cartas repartidas de baraja esté entre 8 y 12 es de ", round(frecuencia.porcentaje, 2), "% ocurriendo un total de ", nrow(resultado), " veces", sep = "")
## [1] "La probabilidad de que la suma de los puntos de dos cartas repartidas de baraja esté entre 8 y 12 es de 32.54% ocurriendo un total de 55 veces"
Es similar al anterior, solo debo crear un subset con la condición de que la suma se encuentre entre 30 y 50 puntos para las fichas de dominó.
resultado = subset(fichas, 30 <= fichas$suma & fichas$suma <= 50)
head(resultado, 10)
## F1 F2 F3 F4 F5 F6 F7 suma
## 208 00 01 02 03 04 26 66 30
## 232 00 01 02 03 04 35 66 30
## 237 00 01 02 03 04 36 56 30
## 238 00 01 02 03 04 36 66 31
## 243 00 01 02 03 04 44 66 30
## 246 00 01 02 03 04 45 56 30
## 247 00 01 02 03 04 45 66 31
## 248 00 01 02 03 04 46 55 30
## 249 00 01 02 03 04 46 56 31
## 250 00 01 02 03 04 46 66 32
tail(resultado, 10)
## F1 F2 F3 F4 F5 F6 F7 suma
## 1181157 23 24 33 34 35 44 55 50
## 1181170 23 24 33 34 36 44 45 50
## 1181401 23 25 26 33 34 35 36 50
## 1181402 23 25 26 33 34 35 44 49
## 1181403 23 25 26 33 34 35 45 50
## 1181408 23 25 26 33 34 36 44 50
## 1181414 23 25 26 33 34 44 45 50
## 1181611 23 25 33 34 35 36 44 50
## 1181617 23 25 33 34 35 44 45 50
## 1182326 24 25 26 33 34 35 44 50
N = nrow(fichas)
frecuencia.porcentaje = nrow(resultado) * 100 / N
paste("La probabilidad de que la suma de los puntos de siete fichas esté entre 30 y 50 es de ", round(frecuencia.porcentaje, 2), "% ocurriendo un total de ", nrow(resultado), " veces", sep = "")
## [1] "La probabilidad de que la suma de los puntos de siete fichas esté entre 30 y 50 es de 84.8% ocurriendo un total de 1004092 veces"
Como podemos ver en cálculo de probabilidad de estos tres eventos, el que tiene más probabilidad de ocurrir es que la probabilidad de que la suma de los puntos de siete fichas esté entre 30 y 50, con un 84.8% frente al 32.54% de la suma de cartas y al 50% de la probabilidad de obtener águila en una moneda.
Conteste estas preguntas extras:
Primero calcularé la probabilidad de sacar un 10 rojo en la ruleta:
N = length(S.ruleta)
n = 1 # Solo hay un 10 Rojo en toda la ruleta
paste ("La probabilidad de que caiga un valor en la ruleta de ", N , " alternativas es: ", round(n/N * 100, 2), "%", sep = "")
## [1] "La probabilidad de que caiga un valor en la ruleta de 72 alternativas es: 1.39%"
Luego calcularé la probabilidad de que la suma de dos cartas sea 10:
resultado = subset(tupla.cartas, tupla.cartas$suma == 10)
N = nrow(tupla.cartas)
frecuencia.porcentaje = nrow(resultado) * 100 / N
paste("La probabilidad de que la suma de dos cartas sea 10 es de ", round(frecuencia.porcentaje, 2), "%", sep = "")
## [1] "La probabilidad de que la suma de dos cartas sea 10 es de 5.33%"
La probabilidad de que la suma de dos cartas sea 10 tiene una mayor probabilidad, siendo de 5.33%.
resultado = subset(tupla.cartas, tupla.cartas$suma < 15)
N = nrow(tupla.cartas)
frecuencia.porcentaje = nrow(resultado) / N * 100
paste("La probabilidad de que la suma de dos cartas de la baraja inglesa sea menor a 15 puntos es de ", round(frecuencia.porcentaje, 2), "%", sep = "")
## [1] "La probabilidad de que la suma de dos cartas de la baraja inglesa sea menor a 15 puntos es de 60.95%"
resultado = subset(fichas, fichas$suma < 50)
N = nrow(fichas)
frecuencia.porcentaje = nrow(resultado) / N * 100
paste("La probabilidad de que la suma de las 7 fichas den una suma menor a 50 puntos es de ", round(frecuencia.porcentaje, 2), "%", sep = "")
## [1] "La probabilidad de que la suma de las 7 fichas den una suma menor a 50 puntos es de 85.43%"
La probabilidad de que la suma de las 7 fichas sea menor a 50 mayor, siendo de 85.43%.
resultado = subset(tupla.cartas, 8 <= suma & suma <= 12)
N = nrow(tupla.cartas)
# Como hablamos de que deben ser dos barajas, entonces debemos sacar el cuadrado de la potencia para calcular la probabilidad de que ocurra dos veces de forma sucesiva.
frecuencia.porcentaje = (nrow(resultado) / N) * (nrow(resultado) / N) * 100
paste("La probabilidad de que que salga en la suma un valor entre 8 y 12 en dos barajas de forma sucesiva es de ", round(frecuencia.porcentaje, 2), "%", sep = "")
## [1] "La probabilidad de que que salga en la suma un valor entre 8 y 12 en dos barajas de forma sucesiva es de 10.59%"
resultado = subset(fichas, 20 <= suma & suma <= 30)
N = nrow(fichas)
frecuencia.porcentaje = nrow(resultado) / N * 100
paste("La probabilidad de que la suma de las 7 fichas den una suma entre 20 y 30 puntos es de ", round(frecuencia.porcentaje, 2), "%", sep = "")
## [1] "La probabilidad de que la suma de las 7 fichas den una suma entre 20 y 30 puntos es de 5.03%"
Resultó que fue más probable que salga en la suma un valor entre 8 y 12 en dos barajas, con un 10.59% de probabilidad frente al 5.03% de probabilidad de que la suma de las 7 fichas esté entre 20 y 30 puntos.
¿A qué conclusiones llegan respecto a los ejercicios vistos en este caso?
La forma de calcular probabilidades puede ser muy diferente respecto de un problema hacia otro, la manera que usamos en R es directamente creando una sublista que contenga todos los valores que cumplen con las condiciones, y luego aplicamos un poco de matemáticas para encontrar qué porcentaje representa del espacio muestral.
Todo depende mucho del contexto en el que se esté formulando la situación, a veces un pequeño detalle puede cambiar una pregunta de forma bastante radical, pero al final puede ser de ayuda para encontrar un resultado bajo otras condiciones.
Walpole, Ronald E., Raymond H. Myers, and Sharon L. Myers. 2012. Probabilidad y Estadística Para Ingeniería y Ciencias. Novena Edición. México: Pearson.