Motor Claims Reserve

Date : 02/05/2022

Author : Omar Soub


Introduction

The purpose of this project is to predict the best claims reservation (incurred claims+IBNR) noting that the incurred claims means the claims incurred and have been reported to the insurance company,while the IBNR is the claims incurred but not reported (pure IBNR , or incurred but not enough reported IBNER due to claims developments)

We will be using - autoPaid - data set in triangle format/type which can be found on chainladder package,noting that we will be using chainladder package from R analysis software especially for achieving our project.

Part One : The data set.

1. the data set in triangle format :

##       dev
## origin      1      2      3      4      5      6      7      8      9     10
##     1  101125 209921 266618 305107 327850 340669 348430 351193 353353 353584
##     2  102541 203213 260677 303182 328932 340948 347333 349813 350523     NA
##     3  114932 227704 298120 345542 367760 377999 383611 385224     NA     NA
##     4  114452 227761 301072 340669 359979 369248 373325     NA     NA     NA
##     5  115597 243611 315215 354490 372376 382738     NA     NA     NA     NA
##     6  127760 259416 326975 365780 386725     NA     NA     NA     NA     NA
##     7  135616 262294 327086 367357     NA     NA     NA     NA     NA     NA
##     8  127177 244249 317972     NA     NA     NA     NA     NA     NA     NA
##     9  128631 246803     NA     NA     NA     NA     NA     NA     NA     NA
##     10 126288     NA     NA     NA     NA     NA     NA     NA     NA     NA

the above data set show the claims incurred development by each development year for each origin year.
in instance the claims incurred for the 1st year were 101125 , then it became 209921 in the 2nd development year due to claims developments which include IBNR and IBNER , and the same apply for all origin and dev years.

note that the 10nth development year for the 1st origin year has the ultimate reserve which include incurred and IBNR



2. the development years cumulative claims each origin year:

##       dev
## origin      1      2      3       4       5       6       7       8       9
##     1  101125 311046 577664  882771 1210621 1551290 1899720 2250913 2604266
##     2  102541 305754 566431  869613 1198545 1539493 1886826 2236639 2587162
##     3  114932 342636 640756  986298 1354058 1732057 2115668 2500892      NA
##     4  114452 342213 643285  983954 1343933 1713181 2086506      NA      NA
##     5  115597 359208 674423 1028913 1401289 1784027      NA      NA      NA
##     6  127760 387176 714151 1079931 1466656      NA      NA      NA      NA
##     7  135616 397910 724996 1092353      NA      NA      NA      NA      NA
##     8  127177 371426 689398      NA      NA      NA      NA      NA      NA
##     9  128631 375434     NA      NA      NA      NA      NA      NA      NA
##     10 126288     NA     NA      NA      NA      NA      NA      NA      NA
##       dev
## origin      10
##     1  2957850
##     2       NA
##     3       NA
##     4       NA
##     5       NA
##     6       NA
##     7       NA
##     8       NA
##     9       NA
##     10      NA


3. the difference between the development years claims for each origin year:

##       dev
## origin      1      2     3     4     5     6    7    8    9  10
##     1  101125 108796 56697 38489 22743 12819 7761 2763 2160 231
##     2  102541 100672 57464 42505 25750 12016 6385 2480  710  NA
##     3  114932 112772 70416 47422 22218 10239 5612 1613   NA  NA
##     4  114452 113309 73311 39597 19310  9269 4077   NA   NA  NA
##     5  115597 128014 71604 39275 17886 10362   NA   NA   NA  NA
##     6  127760 131656 67559 38805 20945    NA   NA   NA   NA  NA
##     7  135616 126678 64792 40271    NA    NA   NA   NA   NA  NA
##     8  127177 117072 73723    NA    NA    NA   NA   NA   NA  NA
##     9  128631 118172    NA    NA    NA    NA   NA   NA   NA  NA
##     10 126288     NA    NA    NA    NA    NA   NA   NA   NA  NA


4. the percent of changing in the development years claims each origin year.

##       dev
## origin   1-2   2-3   3-4   4-5   5-6   6-7   7-8   8-9  9-10
##   1    2.076 1.270 1.144 1.075 1.039 1.023 1.008 1.006 1.001
##   2    1.982 1.283 1.163 1.085 1.037 1.019 1.007 1.002    NA
##   3    1.981 1.309 1.159 1.064 1.028 1.015 1.004    NA    NA
##   4    1.990 1.322 1.132 1.057 1.026 1.011    NA    NA    NA
##   5    2.107 1.294 1.125 1.050 1.028    NA    NA    NA    NA
##   6    2.030 1.260 1.119 1.057    NA    NA    NA    NA    NA
##   7    1.934 1.247 1.123    NA    NA    NA    NA    NA    NA
##   8    1.921 1.302    NA    NA    NA    NA    NA    NA    NA
##   9    1.919    NA    NA    NA    NA    NA    NA    NA    NA
##   smpl 1.993 1.286 1.138 1.065 1.031 1.017 1.006 1.004 1.001
##   vwtd 1.990 1.285 1.137 1.064 1.031 1.017 1.006 1.004 1.001

we can see that for the 1st origin year, the differnce percent between the 1st &2nd development years is 2.076 and between the 2nd & 3rd development years is 1.270 and so on, this means, that the iccured claims increased by 2.076 on the 2nd development year & in creased by 1.270 on the 3rd development year


Part two : mackchainladder

Applying mackchainladder

now will apply the mackchainladderfuntion model to forecasts future claims developments based on a historical claims development triangle and estimates the standard error around those.

## MackChainLadder(Triangle = autoPaid, est.sigma = "Mack")
## 
##     Latest Dev.To.Date Ultimate    IBNR Mack.S.E CV(IBNR)
## 1  353,584       1.000  353,584       0        0      NaN
## 2  350,523       0.999  350,752     229      998   4.3544
## 3  385,224       0.995  387,054   1,830    1,713   0.9360
## 4  373,325       0.989  377,481   4,156    1,885   0.4537
## 5  382,738       0.973  393,454  10,716    2,872   0.2680
## 6  386,725       0.943  409,932  23,207    3,847   0.1658
## 7  367,357       0.887  414,305  46,948    6,405   0.1364
## 8  317,972       0.780  407,609  89,637    9,177   0.1024
## 9  246,803       0.607  406,593 159,790   12,532   0.0784
## 10 126,288       0.305  414,021 287,733   19,085   0.0663
## 
##                 Totals
## Latest:   3,290,539.00
## Dev:              0.84
## Ultimate: 3,914,785.82
## IBNR:       624,246.82
## Mack.S.E     30,358.21
## CV(IBNR):         0.05

we can see that:
1. the Ultimate for the 1st origin year is 353,584 & for the 2nd year origin 350,752 and so on.
2. the IBNR for the 2nd year is 229 & for the 3rd year 1830 and so on.
3. the total of latest claims is 3,290,539.00 & the total ultimate claims is 3,914,785.82 with .87 Dev to date in total.
4. the total IBNR is 624,246.82 with mack standard error of 0.05 in total (30,358.21 in numbers)



The standard error in triangles :

##       dev
## origin 1       2         3         4         5         6         7         8
##     1  0    0.00     0.000     0.000     0.000     0.000     0.000     0.000
##     2  0    0.00     0.000     0.000     0.000     0.000     0.000     0.000
##     3  0    0.00     0.000     0.000     0.000     0.000     0.000     0.000
##     4  0    0.00     0.000     0.000     0.000     0.000     0.000   846.437
##     5  0    0.00     0.000     0.000     0.000     0.000  2094.555  2279.905
##     6  0    0.00     0.000     0.000     0.000  2401.343  3251.425  3391.420
##     7  0    0.00     0.000     0.000  4812.878  5519.778  6013.675  6118.106
##     8  0    0.00     0.000  5881.012  7866.651  8457.300  8860.678  8961.120
##     9  0    0.00  6668.704  9588.736 11258.223 11852.202 12237.891 12347.534
##     10 0 8667.76 13017.925 15941.930 17630.574 18339.307 18769.975 18910.504
##       dev
## origin         9         10
##     1      0.000     0.0000
##     2      0.000   997.8177
##     3   1332.813  1712.9000
##     4   1561.920  1885.4599
##     5   2656.495  2872.4144
##     6   3676.537  3846.5568
##     7   6299.784  6404.7907
##     8   9103.105  9177.4357
##     9  12474.455 12532.4060
##     10 19039.129 19085.1603

we can see that the 2nd origin year will have almost 998 S.E at the 10th Dev. year, & the 3rd origin year will have almost 1333 S.E at the 9th Dev. year ,and almost 1713 at the 10th Dev. yearm ans so on.



The full triangle :

##       dev
## origin      1        2        3        4        5        6        7        8
##     1  101125 209921.0 266618.0 305107.0 327850.0 340669.0 348430.0 351193.0
##     2  102541 203213.0 260677.0 303182.0 328932.0 340948.0 347333.0 349813.0
##     3  114932 227704.0 298120.0 345542.0 367760.0 377999.0 383611.0 385224.0
##     4  114452 227761.0 301072.0 340669.0 359979.0 369248.0 373325.0 375696.3
##     5  115597 243611.0 315215.0 354490.0 372376.0 382738.0 389122.5 391594.1
##     6  127760 259416.0 326975.0 365780.0 386725.0 398766.6 405418.4 407993.6
##     7  135616 262294.0 327086.0 367357.0 390850.8 403020.9 409743.7 412346.3
##     8  127177 244249.0 317972.0 361419.5 384533.7 396507.0 403121.2 405681.7
##     9  128631 246803.0 317179.7 360518.9 383575.5 395519.0 402116.7 404670.8
##     10 126288 251311.7 322974.1 367105.1 390582.8 402744.5 409462.7 412063.6
##       dev
## origin        9       10
##     1  353353.0 353584.0
##     2  350523.0 350752.1
##     3  386801.2 387054.0
##     4  377234.4 377481.1
##     5  393197.4 393454.4
##     6  409663.9 409931.8
##     7  414034.5 414305.2
##     8  407342.6 407608.9
##     9  406327.6 406593.2
##     10 413750.6 414021.1

Part Three : data distribution

Data distribution using bootchainladder function :

## BootChainLadder(Triangle = autoPaid, R = 999, process.distr = c("gamma", 
##     "od.pois"))
## 
##     Latest Mean Ultimate Mean IBNR IBNR.S.E IBNR 75% IBNR 95%
## 1  353,584       353,584         0        0        0        0
## 2  350,523       350,764       241      514      395    1,280
## 3  385,224       387,088     1,864    1,175    2,577    3,966
## 4  373,325       377,511     4,186    1,750    5,283    7,274
## 5  382,738       393,540    10,802    2,616   12,421   15,281
## 6  386,725       410,009    23,284    3,876   25,772   29,947
## 7  367,357       414,657    47,300    5,622   50,986   56,020
## 8  317,972       407,930    89,958    8,057   95,419  103,850
## 9  246,803       407,026   160,223   11,603  168,089  179,969
## 10 126,288       414,814   288,526   22,281  304,326  325,857
## 
##                    Totals
## Latest:         3,290,539
## Mean Ultimate:  3,916,925
## Mean IBNR:        626,386
## IBNR.S.E           30,292
## Total IBNR 75%:   646,509
## Total IBNR 95%:   675,553

we can see that:
1. the mean ultimate incurred claims is : 3,915,580
2. the mean IBNR is : 625,041 with standard error of : 30,442
3. the IBNR at the 75% quantile is:645,833 & and at 95% is :675,558
4. this means that the IBNR is almost normally distributed .


Part Four : reserve using GLM model

the generalized linear model for loss reserving

##        Latest Dev.To.Date Ultimate   IBNR        S.E         CV
## 2      350523   0.9993471   350752    229   464.3474 2.02771788
## 3      385224   0.9952720   387054   1830  1187.4583 0.64888432
## 4      373325   0.9889902   377481   4156  1700.7849 0.40923602
## 5      382738   0.9727643   393454  10716  2650.8531 0.24737338
## 6      386725   0.9433882   409932  23207  3867.6316 0.16665797
## 7      367357   0.8866825   414305  46948  5552.4815 0.11826875
## 8      317972   0.7800907   407609  89637  8024.2919 0.08951986
## 9      246803   0.6070026   406593 159790 11982.6054 0.07498971
## 10     126288   0.3050280   414021 287733 22428.0768 0.07794753
## total 2936955   0.8247089  3561202 624247 30832.5263 0.04939155

extract the underlying GLM model :

## 
## Call:
## glm(formula = value ~ factor(origin) + factor(dev), family = fam, 
##     data = ldaFit, offset = offset)
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      11.588524   0.040888 283.421  < 2e-16 ***
## factor(origin)2  -0.008041   0.051794  -0.155 0.877489    
## factor(origin)3   0.090443   0.050637   1.786 0.082506 .  
## factor(origin)4   0.065399   0.051048   1.281 0.208340    
## factor(origin)5   0.106844   0.050796   2.103 0.042484 *  
## factor(origin)6   0.147870   0.050751   2.914 0.006105 ** 
## factor(origin)7   0.158482   0.051518   3.076 0.003990 ** 
## factor(origin)8   0.142187   0.053672   2.649 0.011908 *  
## factor(origin)9   0.139692   0.058005   2.408 0.021275 *  
## factor(origin)10  0.157796   0.073551   2.145 0.038740 *  
## factor(dev)2     -0.010061   0.029810  -0.338 0.737684    
## factor(dev)3     -0.566599   0.036779 -15.406  < 2e-16 ***
## factor(dev)4     -1.051402   0.046362 -22.678  < 2e-16 ***
## factor(dev)5     -1.682513   0.064812 -25.960  < 2e-16 ***
## factor(dev)6     -2.340274   0.095993 -24.380  < 2e-16 ***
## factor(dev)7     -2.933742   0.143040 -20.510  < 2e-16 ***
## factor(dev)8     -3.882731   0.263858 -14.715  < 2e-16 ***
## factor(dev)9     -4.315592   0.406793 -10.609 1.25e-12 ***
## factor(dev)10    -6.146107   1.430109  -4.298 0.000125 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Tweedie family taken to be 472.0577)
## 
##     Null deviance: 2379116  on 54  degrees of freedom
## Residual deviance:   16899  on 36  degrees of freedom
## AIC: NA
## 
## Number of Fisher Scoring iterations: 4

Part Four : Paid-incurred chain model

this model uses both : the claims payments and incurred losses(the number of incurred losses) to get a unified ultimate loss prediction.

will use the same paid claims data used earlier, and the incurred claims data set we will use is the -auto Incurred- which can be found on chainladder package.

lets have a look at both data sets:

auto Paid data set:

##       dev
## origin      1      2      3      4      5      6      7      8      9     10
##     1  101125 209921 266618 305107 327850 340669 348430 351193 353353 353584
##     2  102541 203213 260677 303182 328932 340948 347333 349813 350523     NA
##     3  114932 227704 298120 345542 367760 377999 383611 385224     NA     NA
##     4  114452 227761 301072 340669 359979 369248 373325     NA     NA     NA
##     5  115597 243611 315215 354490 372376 382738     NA     NA     NA     NA
##     6  127760 259416 326975 365780 386725     NA     NA     NA     NA     NA
##     7  135616 262294 327086 367357     NA     NA     NA     NA     NA     NA
##     8  127177 244249 317972     NA     NA     NA     NA     NA     NA     NA
##     9  128631 246803     NA     NA     NA     NA     NA     NA     NA     NA
##     10 126288     NA     NA     NA     NA     NA     NA     NA     NA     NA

auto Incurred data set:(no. the incurred losses)

##       dev
## origin      1      2      3      4      5      6      7      8      9     10
##     1  325423 336426 346061 347726 350995 353598 354797 355025 354986 355363
##     2  323627 339267 344507 349295 351038 351583 352050 352231 352193     NA
##     3  358410 386330 385684 384699 387678 387954 388540 389436     NA     NA
##     4  405319 396641 391833 384819 380914 380163 379706     NA     NA     NA
##     5  434065 429311 422181 409322 394154 392802     NA     NA     NA     NA
##     6  417178 422307 413486 406711 406503     NA     NA     NA     NA     NA
##     7  398929 398787 398020 400540     NA     NA     NA     NA     NA     NA
##     8  378754 361097 369328     NA     NA     NA     NA     NA     NA     NA
##     9  351081 335507     NA     NA     NA     NA     NA     NA     NA     NA
##     10 329236     NA     NA     NA     NA     NA     NA     NA     NA     NA

the model outputs:

## $Ult.Loss.Origin
##           [,1]
##  [1,] 352566.7
##  [2,] 389696.9
##  [3,] 380137.3
##  [4,] 394357.5
##  [5,] 410371.3
##  [6,] 411260.9
##  [7,] 394319.5
##  [8,] 386660.9
##  [9,] 369855.4
## 
## $Ult.Loss
## [1] 3489226
## 
## $Res.Origin
##             [,1]
##  [1,]   2043.682
##  [2,]   4472.911
##  [3,]   6812.299
##  [4,]  11619.455
##  [5,]  23646.289
##  [6,]  43903.948
##  [7,]  76347.542
##  [8,] 139857.949
##  [9,] 243567.371
## 
## $Res.Tot
## [1] 552271.4
## 
## $s.e.
## [1] 21612.81

we can see that
1. the ultimate loss will be 3489226
2. the total reserve will be 552271.4
3.the total S.E will be 21612.81


Part Four : One year claims development

model simple explanation

this model means a short-term view and assessments of the one-year changes of the claims predictions when one updates the available information at the end of each accounting year

we will use the functions CDR : -one year claim development result -

##              IBNR CDR(1)S.E. CDR(2)S.E. CDR(3)S.E. CDR(4)S.E. CDR(5)S.E.
## 1          0.0000     0.0000     0.0000     0.0000     0.0000     0.0000
## 2        229.1499   997.8177     0.0000     0.0000     0.0000     0.0000
## 3       1830.0181  1442.0056   924.4707     0.0000     0.0000     0.0000
## 4       4156.0534  1105.4590  1268.4483   850.8574     0.0000     0.0000
## 5      10716.4040  2253.6958   964.0382  1237.4955   843.1222     0.0000
## 6      23206.7589  2637.3737  2183.9375   916.5884  1231.9929   844.2364
## 7      46948.1842  5206.7444  2529.0008  2135.1706   884.2348  1215.0949
## 8      89636.9105  6755.6483  5049.2556  2443.4813  2078.2032   851.3035
## 9     159790.2318  8687.7932  6639.8133  4979.0587  2403.1289  2050.3506
## 10    287733.1080 14401.9739  8669.9570  6639.9295  4985.4753  2401.8493
## Total 624246.8188 22752.3275 14773.0832 10307.9026  6884.0988  4133.2281
##       CDR(6)S.E. CDR(7)S.E. CDR(8)S.E. CDR(9)S.E. CDR(10)S.E.  Mack.S.E.
## 1         0.0000     0.0000     0.0000     0.0000           0     0.0000
## 2         0.0000     0.0000     0.0000     0.0000           0   997.8177
## 3         0.0000     0.0000     0.0000     0.0000           0  1712.9000
## 4         0.0000     0.0000     0.0000     0.0000           0  1885.4599
## 5         0.0000     0.0000     0.0000     0.0000           0  2872.4144
## 6         0.0000     0.0000     0.0000     0.0000           0  3846.5568
## 7       835.4823     0.0000     0.0000     0.0000           0  6404.7907
## 8      1186.7369   817.9051     0.0000     0.0000           0  9177.4357
## 9       833.6339  1172.9711   809.6488     0.0000           0 12532.4060
## 10     2052.7089   830.7797  1175.6989   812.2527           0 19085.1603
## Total  2948.3560  1853.6696  1480.8285   812.2527           0 30358.2137

Part Five : glmreserve

many issuance uses for loss reserving:

##        Latest Dev.To.Date Ultimate   IBNR        S.E         CV
## 2      350523   0.9993471   350752    229   464.3474 2.02771788
## 3      385224   0.9952720   387054   1830  1187.4583 0.64888432
## 4      373325   0.9889902   377481   4156  1700.7849 0.40923602
## 5      382738   0.9727643   393454  10716  2650.8531 0.24737338
## 6      386725   0.9433882   409932  23207  3867.6316 0.16665797
## 7      367357   0.8866825   414305  46948  5552.4815 0.11826875
## 8      317972   0.7800907   407609  89637  8024.2919 0.08951986
## 9      246803   0.6070026   406593 159790 11982.6054 0.07498971
## 10     126288   0.3050280   414021 287733 22428.0768 0.07794753
## total 2936955   0.8247089  3561202 624247 30832.5263 0.04939155

to extract the underlying GLM model:

## 
## Call:
## glm(formula = value ~ factor(origin) + factor(dev), family = fam, 
##     data = ldaFit, offset = offset)
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      11.588524   0.040888 283.421  < 2e-16 ***
## factor(origin)2  -0.008041   0.051794  -0.155 0.877489    
## factor(origin)3   0.090443   0.050637   1.786 0.082506 .  
## factor(origin)4   0.065399   0.051048   1.281 0.208340    
## factor(origin)5   0.106844   0.050796   2.103 0.042484 *  
## factor(origin)6   0.147870   0.050751   2.914 0.006105 ** 
## factor(origin)7   0.158482   0.051518   3.076 0.003990 ** 
## factor(origin)8   0.142187   0.053672   2.649 0.011908 *  
## factor(origin)9   0.139692   0.058005   2.408 0.021275 *  
## factor(origin)10  0.157796   0.073551   2.145 0.038740 *  
## factor(dev)2     -0.010061   0.029810  -0.338 0.737684    
## factor(dev)3     -0.566599   0.036779 -15.406  < 2e-16 ***
## factor(dev)4     -1.051402   0.046362 -22.678  < 2e-16 ***
## factor(dev)5     -1.682513   0.064812 -25.960  < 2e-16 ***
## factor(dev)6     -2.340274   0.095993 -24.380  < 2e-16 ***
## factor(dev)7     -2.933742   0.143040 -20.510  < 2e-16 ***
## factor(dev)8     -3.882731   0.263858 -14.715  < 2e-16 ***
## factor(dev)9     -4.315592   0.406793 -10.609 1.25e-12 ***
## factor(dev)10    -6.146107   1.430109  -4.298 0.000125 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Tweedie family taken to be 472.0577)
## 
##     Null deviance: 2379116  on 54  degrees of freedom
## Residual deviance:   16899  on 36  degrees of freedom
## AIC: NA
## 
## Number of Fisher Scoring iterations: 4

Part Five : Clark’s methods

Clark’s methods work on incremental losses. His likelihood function is based on the assumption that incremental losses follow an over-dispersed Poisson (ODP) process.

##  Origin CurrentValue   Ldf UltimateValue FutureValue StdError  CV%
##       1      353,584 1.100       388,960      35,376    9,724 27.5
##       2      350,523 1.113       390,304      39,781   10,430 26.2
##       3      385,224 1.131       435,606      50,382   12,089 24.0
##       4      373,325 1.154       430,747      57,422   13,075 22.8
##       5      382,738 1.186       453,878      71,140   14,937 21.0
##       6      386,725 1.233       476,961      90,236   17,324 19.2
##       7      367,357 1.310       481,318     113,961   20,008 17.6
##       8      317,972 1.454       462,403     144,431   23,179 16.0
##       9      246,803 1.810       446,807     200,004   28,987 14.5
##      10      126,288 3.814       481,723     355,435   51,988 14.6
##   Total    3,290,539           4,448,705   1,158,166  113,917  9.8
##  Origin CurrentValue   Ldf UltimateValue FutureValue StdError  CV%
##       1      353,584 1.053       372,464      18,880    6,332 33.5
##       2      350,523 1.066       373,751      23,228    7,115 30.6
##       3      385,224 1.083       417,132      31,908    8,538 26.8
##       4      373,325 1.105       412,479      39,154    9,630 24.6
##       5      382,738 1.136       434,629      51,891   11,397 22.0
##       6      386,725 1.181       456,733      70,008   13,687 19.6
##       7      367,357 1.255       460,906      93,549   16,410 17.5
##       8      317,972 1.393       442,793     124,821   19,809 15.9
##       9      246,803 1.734       427,858     181,055   25,920 14.3
##      10      126,288 3.653       461,294     335,006   49,227 14.7
##   Total    3,290,539           4,260,040     969,501   85,817  8.9

but; using The Weibull growth curve tends to be faster developing than the log-logistic

##  Origin CurrentValue   Ldf UltimateValue FutureValue StdError  CV%
##       1      353,584 1.007       355,911       2,327    1,388 59.6
##       2      350,523 1.011       354,275       3,752    1,788 47.7
##       3      385,224 1.018       391,986       6,762    2,460 36.4
##       4      373,325 1.029       384,185      10,860    3,170 29.2
##       5      382,738 1.049       401,468      18,730    4,262 22.8
##       6      386,725 1.084       419,291      32,566    5,761 17.7
##       7      367,357 1.150       422,595      55,238    7,685 13.9
##       8      317,972 1.287       409,308      91,336   10,231 11.2
##       9      246,803 1.637       403,968     157,165   14,716  9.4
##      10      126,288 3.396       428,903     302,615   28,967  9.6
##   Total    3,290,539           3,971,890     681,351   42,396  6.2


##  Origin CurrentValue    Premium   ELR FutureGrowthFactor FutureValue
##       1      353,584  1,000,000 0.392             0.0059       2,311
##       2      350,523  1,000,000 0.392             0.0097       3,784
##       3      385,224  1,000,000 0.392             0.0159       6,231
##       4      373,325  1,000,000 0.392             0.0263      10,323
##       5      382,738  1,000,000 0.392             0.0440      17,226
##       6      386,725  1,000,000 0.392             0.0740      28,995
##       7      367,357  1,000,000 0.392             0.1259      49,333
##       8      317,972  1,000,000 0.392             0.2173      85,149
##       9      246,803  1,000,000 0.392             0.3829     150,083
##      10      126,288  1,000,000 0.392             0.7020     275,129
##   Total    3,290,539 10,000,000                              628,564
##  UltimateValue StdError  CV%
##        355,895    1,470 63.6
##        354,307    1,907 50.4
##        391,455    2,482 39.8
##        383,648    3,238 31.4
##        399,964    4,226 24.5
##        415,720    5,509 19.0
##        416,690    7,158 14.5
##        403,121    9,277 10.9
##        396,886   12,081  8.0
##        401,417   16,129  5.9
##      3,919,103   32,262  5.1