Question comes from “Introduction to Probability” by Charles M. Grinstead.

Question 12, Section 5.1

Problem Description:

Prove that the values of the Poisson Distribution given by:

\[ \begin{equation} P(X=k) = \frac{\lambda^k}{k!}e^{-\lambda} \end{equation} \] sum together to 1.

Solution:

To solve this problem, we need simply to take the sum of \(P(X=k)\) for all values of \(k\) from 0 to \(\infty\) (\(k\) cannot be negative) and show:

\[ \begin{equation} \sum_{k=0}^{\infty} P(X=k) = \sum_{k=0}^{\infty} \frac{\lambda^k}{k!}e^{-\lambda} = 1 \end{equation} \]

Thus we have (note: for clarity’s sake I remove the limits of integration in the work below…):

\[ \begin{align} \sum P(X=k) &= \sum\frac{\lambda^k}{k!}e^{-\lambda} \\ &=e^{-\lambda}\sum\frac{\lambda^k}{k!}\\ &=e^{-\lambda}\left(\frac{\lambda^0}{0!} + \frac{\lambda^1}{1!} + \frac{\lambda^2}{2!}+ ... \right) \end{align} \]

Given that the summation expansion of \(e^x\) is written as:

\[ \begin{align} e^x &= \sum_{x=0}^{\infty} \frac{x^n}{n!} \\ & = \frac{x^0}{0!} + \frac{x^1}{1!} + \frac{x^2}{2!}+ ... \end{align} \]

We conclude that:

\[ \begin{align} \sum_{k=0}^{\infty} P(X=k) &= e^{-\lambda}e^\lambda \\ &= e^{-\lambda+\lambda} \\ &=e^0 \\ &=1 \end{align} \]

We can also confirm this computationally in R using different \(\lambda\) values and summing to a reasonably high \(k\):

k_max <- 100

for (l in 1:10){
  tot <- 0
  for (k in 0:k_max){ 
    tot <- tot + (((l ** k) / factorial(k)) * exp(-l))
  }
  output <- paste('Using k_max =', k_max, 'and lambda =', l, ': sum =', tot)
  print(output)
}
## [1] "Using k_max = 100 and lambda = 1 : sum = 1"
## [1] "Using k_max = 100 and lambda = 2 : sum = 1"
## [1] "Using k_max = 100 and lambda = 3 : sum = 1"
## [1] "Using k_max = 100 and lambda = 4 : sum = 1"
## [1] "Using k_max = 100 and lambda = 5 : sum = 1"
## [1] "Using k_max = 100 and lambda = 6 : sum = 1"
## [1] "Using k_max = 100 and lambda = 7 : sum = 1"
## [1] "Using k_max = 100 and lambda = 8 : sum = 1"
## [1] "Using k_max = 100 and lambda = 9 : sum = 1"
## [1] "Using k_max = 100 and lambda = 10 : sum = 1"