echo = FALSE parameter was added to the
code chunk to prevent printing of the R code that generated the
plot.title: “Homework 4” author: “Lydia Okabe” format: html editor: visual —
The echo: false option disables the printing of code
(only output is displayed).
##load libraries
library(censusxy)
library(readr)
library(data.table)
##LOADING WIC STORE DATA
wicstores <- read_csv("C:/Users/okabe/OneDrive/Pictures/Stats 2/GIS/wic_west_side.csv")
## New names:
## Rows: 103 Columns: 227
## ── Column specification
## ──────────────────────────────────────────────────────── Delimiter: "," chr
## (113): Source...1, Date, Obsolescence Date, Business Name, Legal Name, P... dbl
## (42): Physical Address Number, Physical ZIP, Physical ZIP 4, Mailing Ad... lgl
## (70): Physical Post Direction, Mailing Post Direction, Importer or Expo...
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `Source` -> `Source...1`
## • `Source` -> `Source...227`
head(wicstores)
## # A tibble: 6 × 227
## Source…¹ Date Obsol…² Busin…³ Legal…⁴ Physi…⁵ Physi…⁶ Physi…⁷ Physi…⁸ Physi…⁹
## <chr> <chr> <chr> <chr> <chr> <chr> <dbl> <chr> <chr> <chr>
## 1 AtoZDat… 2/23… 8/23/2… Coalit… <NA> 1013 S… 1013 S San Ja… St
## 2 AtoZDat… 2/23… 8/23/2… San An… <NA> 1102 D… 1102 <NA> Delgado St
## 3 AtoZDat… 2/23… 8/23/2… Center… <NA> 1115 W… 1115 W Martin St
## 4 AtoZDat… 2/23… 8/23/2… Profes… <NA> 1115 W… 1115 W Martin St
## 5 AtoZDat… 2/23… 8/23/2… Linda … <NA> 1115 W… 1115 W Martin St
## 6 AtoZDat… 2/23… 8/23/2… Adrian… Center… 1115 W… 1115 W Martin St
## # … with 217 more variables: `Physical Post Direction` <lgl>,
## # `Physical City` <chr>, `Physical State` <chr>, `Physical ZIP` <dbl>,
## # `Physical ZIP 4` <dbl>, `Key Executive Name` <chr>, `First Name` <chr>,
## # `Middle Initial` <chr>, `Last Name` <chr>, Title <chr>, Gender <chr>,
## # `Location Employee Size` <dbl>, `Corporate Employee Size` <dbl>,
## # `Revenue / Yr` <chr>, `Mailing Address` <chr>,
## # `Mailing Address Number` <dbl>, `Mailing Pre Direction` <chr>, …
wic<-wicstores[c(6, 12:14)]
names(wic)<-c("street", "city", "st", "zip" )
head(wic)
## # A tibble: 6 × 4
## street city st zip
## <chr> <chr> <chr> <dbl>
## 1 1013 S San Jacinto St San Antonio TX 78207
## 2 1102 Delgado St San Antonio TX 78207
## 3 1115 W Martin St San Antonio TX 78207
## 4 1115 W Martin St San Antonio TX 78207
## 5 1115 W Martin St San Antonio TX 78207
## 6 1115 W Martin St San Antonio TX 78207
library(censusxy)
wicresults<-cxy_geocode(wic,
street = "street",
city = "city",
state ="st",
zip = "zip",
class="sf",
output = "simple")
## 5 rows removed to create an sf object. These were addresses that the geocoder could not match.
library(mapview)
mapview(wicresults, layer.name="WIC Services",col.regions = "green")
library(sf)
## Linking to GEOS 3.9.1, GDAL 3.4.3, PROJ 7.2.1; sf_use_s2() is TRUE
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:data.table':
##
## between, first, last
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
addrLL<-read.csv ("C:/Users/okabe/OneDrive/Pictures/Stats 2/GIS/wic_west_side.csv")
resultsWIC <- st_as_sf(addrLL, coords=c("Longitude", "Latitude"), crs=4269,agr="constant")
resultsWIC.proj<-st_transform(resultsWIC,
crs = 2278)
mapview(resultsWIC.proj,col.regions = "darkgreen")
##load data for grocery stores
grocerystores <- read_csv("C:/Users/okabe/OneDrive/Pictures/Stats 2/GIS/grocery_stores.csv")
## New names:
## Rows: 58 Columns: 228
## ── Column specification
## ──────────────────────────────────────────────────────── Delimiter: "," chr
## (170): Source...1, Date, Obsolescence Date, Business Name, Legal Name, P... dbl
## (45): Physical Address Number, Physical ZIP, Physical ZIP 4, Location E... lgl
## (12): Physical Post Direction, Mailing Post Direction, EIN, Importer or...
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `Source` -> `Source...1`
## • `Source` -> `Source...227`
## • `` -> `...228`
head(grocerystores)
## # A tibble: 6 × 228
## Source…¹ Date Obsol…² Busin…³ Legal…⁴ Physi…⁵ Physi…⁶ Physi…⁷ Physi…⁸ Physi…⁹
## <chr> <chr> <chr> <chr> <chr> <chr> <dbl> <chr> <chr> <chr>
## 1 AtoZDat… 02/2… 08/23/… Surlea… <NA> 1545 S… 1545 S San Ma… <NA>
## 2 AtoZDat… 02/2… 08/23/… Super … <NA> 4522 F… 4522 <NA> Freder… Rd
## 3 AtoZDat… 02/2… 08/23/… Pico D… <NA> 111 S … 111 S Leona St
## 4 AtoZDat… 02/2… 08/23/… Target Target… 4522 F… 4522 <NA> Freder… Rd
## 5 AtoZDat… 02/2… 08/23/… H-E-B … <NA> 3485 F… 3485 <NA> Freder… Rd
## 6 AtoZDat… 02/2… 08/23/… Balcon… <NA> 3309 H… 3309 <NA> Hillcr… Dr
## # … with 218 more variables: `Physical Post Direction` <lgl>,
## # `Physical City` <chr>, `Physical State` <chr>, `Physical ZIP` <dbl>,
## # `Physical ZIP 4` <dbl>, `Key Executive Name` <chr>, `First Name` <chr>,
## # `Middle Initial` <chr>, `Last Name` <chr>, Title <chr>, Gender <chr>,
## # `Location Employee Size` <dbl>, `Corporate Employee Size` <dbl>,
## # `Revenue / Yr` <chr>, `Mailing Address` <chr>,
## # `Mailing Address Number` <dbl>, `Mailing Pre Direction` <chr>, …
grocery<-grocerystores[c(4,6, 12:14)]
names(grocery)<-c("business name","street", "city", "st", "zip" )
head(grocery)
## # A tibble: 6 × 5
## `business name` street city st zip
## <chr> <chr> <chr> <chr> <dbl>
## 1 Surlean Foods 1545 S San Marcos San Antonio TX 78207
## 2 Super Target 4522 Fredericksburg Rd San Antonio TX 78201
## 3 Pico De Gallo 111 S Leona St San Antonio TX 78207
## 4 Target 4522 Fredericksburg Rd San Antonio TX 78201
## 5 H-E-B LP 3485 Fredericksburg Rd San Antonio TX 78201
## 6 Balcones Food Store 3309 Hillcrest Dr San Antonio TX 78201
library(censusxy)
results<-cxy_geocode(grocery,
street = "street",
city = "city",
state ="st",
zip = "zip",
class="sf",
output = "simple")
## 4 rows removed to create an sf object. These were addresses that the geocoder could not match.
###basic map
library(mapview)
mapview(results, layer.name="Grocery Stores",col.regions = "purple")
##longitude and latitude for grocery stores
library(sf)
library(dplyr)
addrLL<-read.csv("C:/Users/okabe/OneDrive/Pictures/Stats 2/GIS/grocery_stores.csv")
resultsgrocery <- st_as_sf(addrLL, coords=c("Longitude", "Latitude"), crs=4269,agr="constant")
resultsgrocery.proj<-st_transform(resultsgrocery,
crs = 2278)
mapview(resultsgrocery.proj)
mapview(list(wicresults, resultsWIC.proj,results,resultsgrocery.proj),
layer.name = c("WIC Locations", "WIC LL", "Grocery Stores", "Grocery StoresLL"), col.regions=list("blue","black", "green", "brown"),col=list("blue","black", "green", "brown"))