Komputasi Statistika
~ Tugas 2 ~
| Kontak | : \(\downarrow\) |
| diyasaryanugroho@gmail.com | |
| https://www.instagram.com/diasary_nm/ | |
| RPubs | https://rpubs.com/diyasarya/ |
Exercise 1
Find a point estimate of average university student Age
with the sample data from survey!
Please explain
something from your exercise result.
Answer 1
library(MASS)
Age.survey = survey$Age
mean(Age.survey, na.rm=TRUE)## [1] 20.37451
p.est<-t.test(Age.survey, conf.level = 0.95)
p.est$conf.int## [1] 19.54600 21.20303
## attr(,"conf.level")
## [1] 0.95
Exercise 2
Assume the population standard deviation [Math Processing Error] of
the student Age in data survey is 7. Find the
margin of error and interval estimate at 95% confidence level.
Answer 2
age.response = na.omit(survey$Age)
n = length(age.response)
sigma = 7
sem = sigma/sqrt(n)
E = qnorm(.975)*sem
E## [1] 0.8911934
xbar = mean(age.response)
xbar## [1] 20.37451
xbar + c(-E, E)## [1] 19.48332 21.26571
Exercise 3
Without assuming the population standard deviation [Math Processing
Error] of the student Age in survey, find the margin of
error and interval estimate at 95% confidence level.
Answer 3
age.response = na.omit(survey$Age)
n = length(age.response)
s = 9.48
SE = s/sqrt(n)
E = qt(.975, df=n-1)*SE
E## [1] 1.213152
xbar = mean(age.response)
xbar## [1] 20.37451
xbar + c(-E, E)## [1] 19.16136 21.58767
Exercise 4
Improve the quality of a sample survey by increasing the
sample size with unknown standard deviation!.
Answer 4
z_star1 = qnorm(.975)
z_star1## [1] 1.959964
E = 1.63
z_star1^2*sigma^2/E^2## [1] 70.84628
Excercise 5
Assume you don’t have planned proportion estimate, find the sample
size needed to achieve 5% margin of error for the male student
survey at 95% confidence level!
Answer 5
zstar = qnorm(.975)
E = 0.05
zstar^2/E^2## [1] 1536.584
Exercise 6
Perform confidence intervals analysis on this data set (cps04.csv) from 2004 that includes data on average hourly earnings, marital status, gender, and age for thousands of people.
Answer 6
e6 = read.csv("cps04.csv")
mean(e6$age, na.rm=TRUE)## [1] 29.75445
p.est <- t.test(e6$age, conf.level = 0.95)
p.est$conf.int## [1] 29.69103 29.81786
## attr(,"conf.level")
## [1] 0.95
t.test(e6$age)##
## One Sample t-test
##
## data: e6$age
## t = 919.71, df = 7985, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 29.69103 29.81786
## sample estimates:
## mean of x
## 29.75445
Population Proportion
female = e6$female
n = length(female)
k = sum(female == "1")
pbar = k/n; pbar## [1] 0.414851
Interval Population Proportion
prop.test(k, n)##
## 1-sample proportions test with continuity correction
##
## data: k out of n, null probability 0.5
## X-squared = 231.26, df = 1, p-value < 2.2e-16
## alternative hypothesis: true p is not equal to 0.5
## 95 percent confidence interval:
## 0.4040262 0.4257582
## sample estimates:
## p
## 0.414851