Finding prime numbers
Prime = 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293 307 311 313 317 331 337 347 349 353 359 367 373 379 383 389 397 401 409 419 421 431 433 439 443 449 457 461 463 467 479 487 491 499
- Walk through a range of numbers
- Check possible factors for each number
- if factors are only 1 or n: Print out the prime number
Fractions
\[Fraction = \frac{Numerator}{Denominator}\]
Equivalent fractions
\[\eqalign{\frac{1}{3} &=& \frac{1\color{yellow}{\times 1}}{3\color{yellow}{\times 1}} &=& \frac{1}{3}\\
&=& \frac{1\color{yellow}{\times 2}}{3\color{yellow}{\times 2}} &=& \frac{2}{6}\\ &=& \frac{1\color{yellow}{\times 3}}{3\color{yellow}{\times 3}} &=& \frac{3}{9}\\
&=& \frac{1\color{yellow}{\times 4}}{3\color{yellow}{\times 4}} &=& \frac{4}{12}\\
&=& \frac{1\color{yellow}{\times 5}}{3\color{yellow}{\times 5}} &=& \frac{5}{15}\\
}
\]
Equivalents
Comparing fractions
\[\frac{32}{3}\ \fbox{?}\ 10\frac{5}{6} \rightarrow
\frac{64}{6}\ \fbox{?}\ 10\frac{5}{6} \rightarrow
\frac{64}{6}\ \fbox{?}\ \frac{60+5}{6}\]
\[\frac{64}{6} < \frac{65}{6}\]
Adding or subtracting fractions
- Combine the terms into fractions
- Convert all the fractions to the same denominator
- Carry out the operation
- Reduce the answer to its simplest form
\[\eqalign{2\frac{1}{2} + 1\frac{1}{6} +3 \frac{2}{3}&=&\frac{5}{2}+\frac{7}{6} +\frac{11}{3} =\frac{5\color{yellow}{\times 3}}{2\color{yellow}{\times 3}}+\frac{7}{6} +\frac{11\color{yellow}{\times 2}}{3\color{yellow}{\times 2}}=\\
&=&\frac{15+7+22}{6}=\frac{44}{6}= 7\frac{1}{3}\\
}\]
Multiplying or dividing fractions
- Combine the terms into fractions
- Multiply across numerators and denominations
- Reduce the answer to its simplest form
\[\eqalign{2\frac{1}{2} \times 1\frac{1}{6} \times 3 \frac{2}{3}&=&
\frac{5}{2}\times \frac{7}{6} \times \frac{11}{3}=\\
\frac{5\times 7\times 11}{2\times 6 \times 3}&=& \frac{385}{36} = 10 \frac{25}{36}\\}\]
Cross products
- Equivalent fractions also have equivalent cross-products.
\[\eqalign{\frac{\color{yellow}{3}}{\color{red}{4}} &=& \frac{\color{red}{6}}{\color{yellow}{8}}\\
\color{yellow}{3 \times 8} &=& \color{red}{4 \times 6}\\
\color{yellow}{24} &=& \color{red}{24} \\
}\]