Given: $ mu=109, n=190, xbar= 110, sd=6, sigma=.05$.
Ho: \(\mu = 109\)
Ha: $ $
$= .05 $
Distribution: z
teststat <- (110-109)/ (6/sqrt(190))
criticalvalue <- qnorm(p=.975,
mean=0,
sd=1)
print(teststat)
## [1] 2.297341
print(criticalvalue)
## [1] 1.959964
test stat is greater than critical value. REJECT
Given: $ mu=5.3, n=5, xbar= 5.0, sd=1.1, sigma=.05$.
Ho: \(\mu = 5.3\)
Ha: \(\mu \neq 5.3\)
$= .05 $
Distribution: t
teststat2 <- (5-5.3)/ (1.1/sqrt(5))
criticalvalue2 <- qt(p=.025, df=4, lower.tail = FALSE)
print(teststat2)
## [1] -0.6098367
print(criticalvalue2)
## [1] 2.776445
test stat is less than critical value. CANT REJECT
Given: $ mu=7.3, n=51, xbar= 7.1, variance=.49, alpha=.01$.
Ho: \(\mu = 7.3\)
Ha: $ $
$= .01, /2=.005 $
Distribution: t
teststat3 <- (7.1-7.3)/ (.7/sqrt(51))
criticalvalue3 <- qt(p=.005, df=50, lower.tail = FALSE)
print(teststat3)
## [1] -2.040408
print(criticalvalue3)
## [1] 2.677793
test stat is less than critical value. CANT REJECT
Given: $ phat= 29/100, n=100, pi=36/100, alpha=.02$.
Ho: pi is greater than or equal to 36/100
Ha: pi less than 36/100
$= .02 $
Distribution: z
teststat4 <- (.29-.36)/.048
criticalvalue4 <- qnorm(p=.02, mean=0, sd=1, lower.tail = TRUE)
print(teststat4)
## [1] -1.458333
print(criticalvalue4)
## [1] -2.053749
test stat is less than critical value. CANT REJECT
Given: $ phat= 95/380, n=380, pi=.31, alpha=.05$.
Ho: pi is greater than or equal to .31
Ha: pi is less than .31
$= .05 $
Distribution: z
criticalvalue5 <- qnorm(p=.05, mean=0, sd=1)
sqrt(.31*(1-.31))
## [1] 0.4624932
sqrt(380)
## [1] 19.49359
.462/19.493
## [1] 0.02370082
teststat5 <- (.25-.31)/ (.0237)
print(teststat5)
## [1] -2.531646
print(criticalvalue5)
## [1] -1.644854
test stat is greater than critical value. CAN REJECT
Given: $ xbar1= 112, sd1=24, n1=22, xbar2=102, sd2= 15.4387, n2= 22, alpha=.01$.
Ho: sd is greater than or equal to .24
Ha: sd is less than .24
$= .01 $
Distribution: t
criticalvalue7 <- qt(p = .995, df = 21)
delta7 <- 112-102
24^2
## [1] 576
15.4387^2
## [1] 238.3535
sqrt(576/22) + sqrt(283.25/22)
## [1] 8.704992
teststat7 <- 10/8.704
print(teststat7)
## [1] 1.148897
print(criticalvalue7)
## [1] 2.83136
test stat is less than critical value. CANT REJECT
Given: $ mu1= 87, sd1=9, n1=32, mu2=84, sd2= 10, n2= 31, alpha=.01$.
Ho: $ mu1-mu2=0 $
Ha: $ mu1-mu2 $
$= .01 $
Distribution: t
mu1 <- 87
mu2 <- 84
alpha = .1
n1 = 32
n2 = 31
df1 = n1 - 1
df2 = n2 - 1
sd1 = 9
sd2 = 10
var1 = sd1^2
var2 = sd2^2
numpointestimatediff = (mu1 - mu2 )
Se8 = sqrt( var1/n1 + var2/n2 )
teststat8 = (numpointestimatediff) / Se8
print(teststat8)
## [1] 1.25032
numdf = (var1/n1 + var2/n2)^2
dendf = (var1/n1)^2 / df1 + (var2/n2)^2 / df2
df = numdf / dendf
criticalvalue8 <- qt(p = (1-alpha/2), df = numdf / dendf )
print(criticalvalue8)
## [1] 1.670703
test stat is less than critical value. CANT REJECT
Given: $ xbar1= 127, sd1=33, n1=11, xbar2=157, sd2= 27, n2= 18, alpha=.05$.
Ho: $ xbar1-xbar2=0 $
Ha: $ xbar1-xbar2 $
$= .01 $
Distribution: t
xbar9<- 127
xbar10 <- 157
alpha = .05
n9 = 11
n10 = 18
df9 = n9 - 1
df10 = n10 - 1
sd9 = 33
sd10 = 27
var9 = sd9^2
var10 = sd10^2
numpointestimatediff = (mu1 - mu2 )
Se9 = sqrt( var9/n9 + var10/n10 )
delta = -30
teststat9 = delta / Se9
print(teststat9)
## [1] -2.540003
numdf9 = (var9/n9 + var10/n10)^2
dendf9 = (var9/n9)^2 / df9 + (var10/n10)^2 / df10
df9 = numdf9 / dendf9
criticalvalue9 <- qt(p = alpha/2, df = numdf9 / dendf9)
print(criticalvalue9)
## [1] -2.10029
test stat is greater than critical value. CAN REJECT
Given: n=10
Ho: $ xbar1-xbar2=0 $
Ha: $ xbar1-xbar2 $
$= .99 $
Distribution: t
r1 = c(32,27,34,24,31,25,30,23,27,35)
r2 = c(28,28,33,25,26,29,33,27,25,33)
delta9 = r1-r2
xbar11 = mean(delta9)
teststat10= qt(p = .99, df = 9)
print(teststat10)
## [1] 2.821438
Se= sd(delta9) / sqrt(length(delta9))
interval = c( xbar11 - teststat10 * Se, xbar11 + teststat10 * Se)
print(interval)
## [1] -2.766534 2.966534
The 98% confidence interval is from -2.766 to 2.966
Given: $ xbar1= 127, sd1=33, n1=11, xbar2=157, sd2= 27, n2= 18, alpha=.05$.
Ho: $ pi1-pi2=0 $
Ha: $ pi1-pi2 $
$= .05 $
Distribution: z
criticalvalue11 <- qnorm(p=.05, lower.tail = FALSE )
print(criticalvalue11)
## [1] 1.644854
p1=195/391
p2=193/510
p1-p2
## [1] 0.1202899
Se11 = sqrt (p1 * (1-p1) / 391 + p2 * (1-p2) / 510)
teststat11 <- (p1-p2)/ Se11
print(teststat11)
## [1] 3.625887
Test stat is greater than critical value. REJECT