library(tidyverse)base_datos <- read_csv("Libro3.csv")
base_datosdata_frame_mod <- transform(
base_datos,Estado_civil = as.factor(Estado_civil), Cliente = as.factor(Cliente))
summary(data_frame_mod)## Edad Celular Estado_civil Cliente
## Min. :22.87 Min. :2.007e+09 casado :36 Aprobatorio :44
## 1st Qu.:31.24 1st Qu.:4.416e+09 divorciado:17 Notable :23
## Median :37.11 Median :6.117e+09 separado :10 Sobresaliente:22
## Mean :37.78 Mean :6.010e+09 soltero :23 suspenso :11
## 3rd Qu.:44.90 3rd Qu.:7.329e+09 viudo :14
## Max. :52.46 Max. :9.987e+09
library(arsenal)base_datos %>%
select(Cliente, Estado_civil) %>%
table() %>%
freqlist() %>%
summary() ##
##
## |Cliente |Estado_civil | Freq| Cumulative Freq| Percent| Cumulative Percent|
## |:-------------|:------------|----:|---------------:|-------:|------------------:|
## |Aprobatorio |casado | 16| 16| 16.00| 16.00|
## | |divorciado | 7| 23| 7.00| 23.00|
## | |separado | 3| 26| 3.00| 26.00|
## | |soltero | 10| 36| 10.00| 36.00|
## | |viudo | 8| 44| 8.00| 44.00|
## |Notable |casado | 8| 52| 8.00| 52.00|
## | |divorciado | 2| 54| 2.00| 54.00|
## | |separado | 4| 58| 4.00| 58.00|
## | |soltero | 5| 63| 5.00| 63.00|
## | |viudo | 4| 67| 4.00| 67.00|
## |Sobresaliente |casado | 9| 76| 9.00| 76.00|
## | |divorciado | 5| 81| 5.00| 81.00|
## | |separado | 2| 83| 2.00| 83.00|
## | |soltero | 6| 89| 6.00| 89.00|
## |suspenso |casado | 3| 92| 3.00| 92.00|
## | |divorciado | 3| 95| 3.00| 95.00|
## | |separado | 1| 96| 1.00| 96.00|
## | |soltero | 2| 98| 2.00| 98.00|
## | |viudo | 2| 100| 2.00| 100.00|
ggplot(data = data_frame_mod,
mapping = aes(x = Celular)) +
geom_histogram()ggplot(data = data_frame_mod,
mapping = aes(Cliente)) +
geom_bar()ggplot(data = data_frame_mod,
mapping = aes(y = Edad)) +
geom_boxplot()library(lessR)
count <- data_frame_mod$Estado_civil
tabla_genero <- table(count)
PieChart(tabla_genero, hole = 0, values = "%", data = count,
, main = "")## >>> Note: tabla_genero is not in a data frame (table)
## >>> Note: tabla_genero is not in a data frame (table)
## >>> suggestions
## PieChart(tabla_genero, hole=0) # traditional pie chart
## PieChart(tabla_genero, values="%") # display %'s on the chart
## PieChart(tabla_genero) # bar chart
## Plot(tabla_genero) # bubble plot
## Plot(tabla_genero, values="count") # lollipop plot
##
## --- tabla_genero ---
##
## casado divorciado separado soltero viudo Total
## Frequencies: 36 17 10 23 14 100
## Proportions: 0.360 0.170 0.100 0.230 0.140 1.000
##
## Chi-squared test of null hypothesis of equal probabilities
## Chisq = 20.500, df = 4, p-value = 0.000