Data Description

Column

Data Description

From 1991 to 1996, Jeffrey pine beetles (JPB) caused tree mor-tality throughout the Lake Tahoe Basin during a severedrought. Census data were collected annually on 10,721trees to assess patterns of JPB-caused mortality. The data were collected during the Lake Tahoe Basin Jeffrey pine beetle outbreak in 1991-1996 from a 60-acre study area with 10,722 trees followed annually.

Those tiny beetles(5 millimeters) can destroy large forest areas

Column

Introduction

Explain the map below and the dataset

Infestation map

Exploratory Analysis

Column

Column

Statistical Models

Column

Column

---
title: "Pine Beetle Models"
output: 
  flexdashboard::flex_dashboard:
    orientation: columns
    vertical_layout: fill
    source_code: embed
    theme: flatly
  

     
---

```{r setup, include = FALSE}

library(flexdashboard)
library(readxl)
library(dplyr)
library(knitr)
library(ggplot2)
library(GGally)
library(tidymodels)
library(vip)

pine_table <- read_excel("Data_1993.xlsx", sheet = 1)

```
Data Description
=======================================================================

Column {data-width=400}
-----------------------------------------------------------------------

### Data Description


From  1991  to  1996,  Jeffrey  pine  beetles (JPB) caused tree mor-tality throughout the Lake Tahoe Basin during a severedrought. Census data were collected annually on 10,721trees to assess patterns of JPB-caused mortality.
The data were collected during the Lake Tahoe Basin Jeffrey pine beetle outbreak in  1991-1996 from a 60-acre study area with 10,722 trees followed annually.

### Those tiny beetles(5 millimeters) can destroy large forest areas

```{r beetle-image, fig.width = 8, fig.height = 8}

image_url <- "http://t0.gstatic.com/licensed-image?q=tbn:ANd9GcRrTUh-9yo7qa8r-paTauCrJMC_Zj4F8miepv24zrr79paRUjnlJchmzoLaRMax7JN2mGjorwzRjMcgmlU"

include_graphics(image_url)

# Data prep
pine_table <-
 pine_table %>%
  mutate(Response = factor(Response,
                           labels = c("Not infested", "Infested")),
         BA_Inf_20th = BA_Inf_20th + 0.001)

```

### 


Column {data-width=1000}
-----------------------------------------------------------------------

### Introduction

Explain the map below and the dataset


### Infestation map


```{r inf-map, fig.width = 25, fig.height = 15}

ggplot(data = pine_table, aes(x = Easting, y = Northing)) +
  geom_point(aes(color = Infest_Serv1),
                 alpha = 0.9) +
  scale_color_gradient("",
                       low = "#009E73",
                       high = "red") +
  theme_gray() +
  xlab("UTM X") +
  ylab("UTM Y") +
  theme(text = element_text(size = 30))

```

Exploratory Analysis
=======================================================================

Column {data-width=500}
-----------------------------------------------------------------------
### 

### 




```{r tree-diam-hist, fig.width = 15, fig.height = 10}

pine_table %>%
  ggplot(aes(x = TreeDiam, fill = Response)) +
  geom_histogram(color="black", alpha = 0.6, position = "identity") +
  scale_fill_manual(values = c("#009E73", "#E69F00")) +
  labs(y = "", x = "Tree diameter", fill = "") +
theme_gray() +
  theme(text = element_text(size = 22))

```


Column {data-width=500}
-----------------------------------------------------------------------

### 



### 



Statistical Models
=======================================================================

Column {data-width=330}
-----------------------------------------------------------------------

### 



### 



### 



Column {data-width=330}
-----------------------------------------------------------------------

### 





### 



###