The goal of this project is just to display that you’ve gotten used to working with the data and that you are on track to create your prediction algorithm. Please submit a report on R Pubs (http://rpubs.com/) that explains your exploratory analysis and your goals for the eventual app and algorithm. This document should be concise and explain only the major features of the data you have identified and briefly summarize your plans for creating the prediction algorithm and Shiny app in a way that would be understandable to a non-data scientist manager. You should make use of tables and plots to illustrate important summaries of the data set. The motivation for this project is to: 1. Demonstrate that you’ve downloaded the data and have successfully loaded it in.2. Create a basic report of summary statistics about the data sets.3. Report any interesting findings that you amassed so far.4. Get feedback on your plans for creating a prediction algorithm and Shiny app.
library(stringi)
library(tm)
## Loading required package: NLP
library(SnowballC)
library(RWeka)
library(ggplot2)
##
## Attaching package: 'ggplot2'
## The following object is masked from 'package:NLP':
##
## annotate
setwd("C:/Antigoni/Rstudio/final/en_US")
blogs <- readLines("en_US.blogs.txt", encoding = "UTF-8", skipNul = TRUE)
news <- readLines(file("en_US.news.txt", open = "rb") , encoding = "UTF-8", skipNul = TRUE)
twitter <- readLines("en_US.twitter.txt", encoding = "UTF-8", skipNul = TRUE)
### Files in MB
mb_blogs <- (file.info("en_US.blogs.txt")$size)/1024/1024
mb_news <- (file.info("en_US.news.txt")$size)/1024/1024
mb_twitter <- (file.info("en_US.twitter.txt")$size)/1024/1024
### Length of files
len_blogs<-length(blogs)
len_news<-length(news)
len_twitter<-length(twitter)
### Number of characters
nchar_blogs<-sum(nchar(blogs))
nchar_news<-sum(nchar(news))
nchar_twitter<-sum(nchar(twitter))
### Number of words
words_blogs<-sum(stri_count_words(blogs))
words_news<-sum(stri_count_words(news))
wordstwitter<-sum(stri_count_words(twitter))
table<-data.frame("File Name"=c("Blogs","News","Twitter"),
"File Size(MB)"=c(mb_blogs,mb_news,mb_twitter),
"Length"=c(len_blogs,len_news,len_twitter),
"Number of character"=c(nchar_blogs,nchar_news,nchar_twitter),
"Number of words"=c(words_blogs,words_news,wordstwitter))
table
## File.Name File.Size.MB. Length Number.of.character Number.of.words
## 1 Blogs 200.4242 899288 206824505 37546250
## 2 News 196.2775 1010242 203223159 34762395
## 3 Twitter 159.3641 2360148 162096241 30093413
cut_blogs <- sample(blogs, size = 1000)
cut_news <- sample(news, size = 1000)
cut_twitter <- sample(twitter, size = 1000)
sample_data <- c(cut_blogs, cut_news, cut_twitter)
corpus <- VCorpus(VectorSource(sample_data))
corpus <- tm_map(corpus, content_transformer(tolower))
corpus <- tm_map(corpus, removeNumbers)
corpus <- tm_map(corpus, removePunctuation)
corpus <- tm_map(corpus, removeWords, stopwords())
corpus <- tm_map(corpus, stemDocument)
corpus <- tm_map(corpus, stripWhitespace)
# Function to generate N-grams
one_tokenizer <- function(x) NGramTokenizer(x, Weka_control(min = 1, max = 1))
two_tokenizer <- function(x) NGramTokenizer(x, Weka_control(min = 2, max = 2))
three_tokenizer <- function(x) NGramTokenizer(x, Weka_control(min = 3, max = 3))
# Generate Document Term matrix
one_dtm <- TermDocumentMatrix(corpus, control = list(tokenize = one_tokenizer))
two_dtm <- TermDocumentMatrix(corpus, control = list(tokenize = two_tokenizer))
three_dim <- TermDocumentMatrix(corpus, control = list(tokenize = three_tokenizer))
# Find the most frequent N-grams
one_freq <- findFreqTerms(one_dtm, lowfreq = 30)
two_freq <- findFreqTerms(two_dtm, lowfreq = 3)
three_freq <- findFreqTerms(three_dim, lowfreq = 3)
one_freq_sum <- rowSums(as.matrix(one_dtm[one_freq,]))
one_freq_sum <- sort(one_freq_sum, decreasing = TRUE)
one_df <- data.frame(word = names(one_freq_sum), frequency = one_freq_sum)
head(one_df)
## word frequency
## said said 306
## one one 268
## will will 262
## just just 243
## get get 231
## like like 229
one_gram<- ggplot(one_df[1:15, ],aes(x=reorder(word,frequency),y=frequency,fill=frequency)) +
geom_bar(stat = "identity")+ labs(x = "words")+ coord_flip()
one_gram
two_freq_sum <- rowSums(as.matrix(two_dtm[two_freq,]))
two_freq_sum <- sort(two_freq_sum, decreasing = TRUE)
two_df <- data.frame(word = names(two_freq_sum), frequency = two_freq_sum)
head(two_df)
## word frequency
## last year last year 26
## new york new york 19
## dont know dont know 15
## right now right now 15
## unit state unit state 15
## look like look like 14
two_gram<- ggplot(two_df[1:15, ],aes(x=reorder(word,frequency),y=frequency,fill=frequency)) +
geom_bar(stat = "identity")+ labs(x = "words")+ coord_flip()
two_gram
three_freq_sum <- rowSums(as.matrix(three_dim[three_freq,]))
three_freq_sum <- sort(three_freq_sum, decreasing = TRUE)
three_df <- data.frame(word = names(three_freq_sum), frequency = three_freq_sum)
head(three_df)
## word frequency
## attempt percent attempt attempt percent attempt 8
## percent attempt percent percent attempt percent 8
## dakota home school dakota home school 5
## north dakota home north dakota home 5
## b c b b c b 4
## sex sex sex sex sex sex 4
three_gram<- ggplot(three_df[1:15, ],aes(x=reorder(word,frequency),y=frequency,fill=frequency)) +
geom_bar(stat = "identity")+ labs(x = "words")+ coord_flip()
three_gram
## Warning: Removed 1 rows containing missing values (`position_stack()`).