library(ISLR2)
library(MASS)
library(class)
library(e1071)
library(dplyr)
library(ggplot2)
This question should be answered using the Weekly data set, which is part of the ISLR2 package. This data is similar in nature to the Smarket data from this chapter’s lab, except that it contains 1, 089 weekly returns for 21 years, from the beginning of 1990 to the end of 2010.
summary(Weekly)
## Year Lag1 Lag2 Lag3
## Min. :1990 Min. :-18.1950 Min. :-18.1950 Min. :-18.1950
## 1st Qu.:1995 1st Qu.: -1.1540 1st Qu.: -1.1540 1st Qu.: -1.1580
## Median :2000 Median : 0.2410 Median : 0.2410 Median : 0.2410
## Mean :2000 Mean : 0.1506 Mean : 0.1511 Mean : 0.1472
## 3rd Qu.:2005 3rd Qu.: 1.4050 3rd Qu.: 1.4090 3rd Qu.: 1.4090
## Max. :2010 Max. : 12.0260 Max. : 12.0260 Max. : 12.0260
## Lag4 Lag5 Volume Today
## Min. :-18.1950 Min. :-18.1950 Min. :0.08747 Min. :-18.1950
## 1st Qu.: -1.1580 1st Qu.: -1.1660 1st Qu.:0.33202 1st Qu.: -1.1540
## Median : 0.2380 Median : 0.2340 Median :1.00268 Median : 0.2410
## Mean : 0.1458 Mean : 0.1399 Mean :1.57462 Mean : 0.1499
## 3rd Qu.: 1.4090 3rd Qu.: 1.4050 3rd Qu.:2.05373 3rd Qu.: 1.4050
## Max. : 12.0260 Max. : 12.0260 Max. :9.32821 Max. : 12.0260
## Direction
## Down:484
## Up :605
##
##
##
##
pairs(Weekly)
The only pattern that is obvious is between volume and year.
logreg= glm(Direction~Lag1+Lag2+Lag3+Lag4+Lag5+Volume, data=Weekly, family="binomial")
summary(logreg)
##
## Call:
## glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 +
## Volume, family = "binomial", data = Weekly)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.6949 -1.2565 0.9913 1.0849 1.4579
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.26686 0.08593 3.106 0.0019 **
## Lag1 -0.04127 0.02641 -1.563 0.1181
## Lag2 0.05844 0.02686 2.175 0.0296 *
## Lag3 -0.01606 0.02666 -0.602 0.5469
## Lag4 -0.02779 0.02646 -1.050 0.2937
## Lag5 -0.01447 0.02638 -0.549 0.5833
## Volume -0.02274 0.03690 -0.616 0.5377
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1496.2 on 1088 degrees of freedom
## Residual deviance: 1486.4 on 1082 degrees of freedom
## AIC: 1500.4
##
## Number of Fisher Scoring iterations: 4
Lag2 is statistically significant.
prob = predict(logreg, type="response")
pred = rep("Down", 1089)
pred[prob > 0.5]="Up"
table(pred, Weekly$Direction)
##
## pred Down Up
## Down 54 48
## Up 430 557
mean(pred == Weekly$Direction)
## [1] 0.5610652
That the model was only accurate in predicting the direction 56.1%
train= (Weekly$Year < 2009)
fit= glm(Direction ~ Lag2, data=Weekly, subset=train, family="binomial")
prob= predict(fit, Weekly[!train, ], type="response")
pred= rep("Down", dim(Weekly[!train, ])[1])
pred[prob > .5]= "Up"
table(pred, Weekly[!train, ]$Direction)
##
## pred Down Up
## Down 9 5
## Up 34 56
mean(pred == Weekly[!train, ]$Direction)
## [1] 0.625
lfit = lda(Direction ~ Lag2, data=Weekly, subset=train)
lpred = predict(lfit, Weekly[!train, ])
table(lpred$class, Weekly[!train, ]$Direction)
##
## Down Up
## Down 9 5
## Up 34 56
mean(lpred$class == Weekly[!train, ]$Direction)
## [1] 0.625
qfit = qda(Direction ~ Lag2, data = Weekly, subset = train)
qpred = predict(qfit, Weekly[!train, ])
table(qpred$class, Weekly[!train, ]$Direction)
##
## Down Up
## Down 0 0
## Up 43 61
mean(qpred$class == Weekly[!train, ]$Direction)
## [1] 0.5865385
train.X= data.frame(Weekly[train, ]$Lag2)
test.X= data.frame(Weekly[!train, ]$Lag2)
train.Direction= Weekly[train, ]$Direction
set.seed(1)
knnpred= knn(train.X, test.X, train.Direction, k = 1)
table(knnpred, Weekly[!train, ]$Direction)
##
## knnpred Down Up
## Down 21 30
## Up 22 31
mean(knnpred == Weekly[!train, ]$Direction)
## [1] 0.5
nbfit= naiveBayes(Direction~Lag2, data=Weekly, subset=train)
nbclass= predict(nbfit , Weekly[!train , ])
table(nbclass , Weekly[!train, ]$Direction)
##
## nbclass Down Up
## Down 0 0
## Up 43 61
mean(nbclass == Weekly[!train, ]$Direction)
## [1] 0.5865385
The logical regression and linear discriminant analysis provided the best prediction accuracy at 62.5%. The quadratic discriminant analysis and naive bayes were after that at 58.7%. The KNN was last with a prediction accuracy of 50%.
knnpred= knn(train.X, test.X, train.Direction, k = 3)
table(knnpred, Weekly[!train, ]$Direction)
##
## knnpred Down Up
## Down 16 19
## Up 27 42
mean(knnpred == Weekly[!train, ]$Direction)
## [1] 0.5576923
Using a K = 3 improves the prediction accuracy from 50% to 55.8%, but still not as good as the other methods used.
In this problem, you will develop a model to predict whether a given car gets high or low gas mileage based on the Auto data set.
Auto$origin= factor(Auto$origin)
mpg01 = rep(0, dim(Auto)[1])
mpg01[Auto$mpg > median(Auto$mpg)] = 1
Auto = data.frame(Auto, mpg01)
plot(factor(Auto$mpg01), Auto$cylinders)
plot(factor(Auto$mpg01), Auto$displacement)
plot(factor(Auto$mpg01), Auto$horsepower)
plot(factor(Auto$mpg01), Auto$weight)
plot(factor(Auto$mpg01), Auto$acceleration)
plot(factor(Auto$mpg01), Auto$year)
plot(factor(Auto$mpg01), Auto$origin)
plot(Auto$cylinders , Auto$mpg01)
plot(Auto$displacement, Auto$mpg01)
plot(Auto$horsepower, Auto$mpg01)
plot(Auto$weight, Auto$mpg01)
plot(Auto$acceleration, Auto$mpg01)
plot(Auto$year, Auto$mpg01)
plot(Auto$origin, Auto$mpg01)
After looking at some boxplots and scatterplots, the best indicators in predicting the mpg01 would be cylinders, displacement, horsepower, weight, year, and origin.
set.seed(1)
rows= sample(x=nrow(Auto), size=.75*nrow(Auto))
trainset= Auto[rows, ]
testset= Auto[-rows, ]
lfit= lda(mpg01~cylinders+displacement+horsepower+weight+year+origin, data=trainset)
lpred= predict(lfit, testset)
table(lpred$class, testset$mpg01)
##
## 0 1
## 0 41 0
## 1 12 45
1-mean(lpred$class==testset$mpg01)
## [1] 0.122449
There was a 13.2% test error when using the LDA method.
qfit= qda(mpg01~cylinders+displacement+horsepower+weight+year+origin, data=trainset)
qpred= predict(qfit, testset)
table(qpred$class, testset$mpg01)
##
## 0 1
## 0 42 2
## 1 11 43
1-mean(qpred$class==testset$mpg01)
## [1] 0.1326531
There was a 11.2% test error when using the QDA method.
logreg= glm(mpg01~cylinders+displacement+horsepower+weight+year+origin, data=trainset, family="binomial")
loprob= predict(logreg, testset, type="response")
lopred= rep(0, dim(testset)[1])
lopred[loprob>.5]=1
table(lopred, testset$mpg01)
##
## lopred 0 1
## 0 45 1
## 1 8 44
1-mean(lopred==testset$mpg01)
## [1] 0.09183673
There was a 9.2% test error with the logical regression method.
nbfit= naiveBayes(mpg01~cylinders+displacement+horsepower+weight+year+origin, data=trainset)
nbclass= predict(nbfit , testset)
table(nbclass, testset$mpg01)
##
## nbclass 0 1
## 0 44 2
## 1 9 43
1-mean(nbclass==testset$mpg01)
## [1] 0.1122449
There was a 12.2% test error using the naive bayes method.
v= which(names(trainset)%in%c("cylinders", "displacement", "horsepower", "weight", "year", "origin"))
set.seed(1)
knnpred= knn(trainset[, v], testset[, v], trainset$mpg01, k = 1)
table(knnpred, testset$mpg01)
##
## knnpred 0 1
## 0 43 4
## 1 10 41
1-mean(knnpred==testset$mpg01)
## [1] 0.1428571
knnpred= knn(trainset[, v], testset[, v], trainset$mpg01, k = 3)
table(knnpred, testset$mpg01)
##
## knnpred 0 1
## 0 44 3
## 1 9 42
1-mean(knnpred==testset$mpg01)
## [1] 0.122449
knnpred= knn(trainset[, v], testset[, v], trainset$mpg01, k = 5)
table(knnpred, testset$mpg01)
##
## knnpred 0 1
## 0 45 5
## 1 8 40
1-mean(knnpred==testset$mpg01)
## [1] 0.1326531
knnpred= knn(trainset[, v], testset[, v], trainset$mpg01, k = 7)
table(knnpred, testset$mpg01)
##
## knnpred 0 1
## 0 43 3
## 1 10 42
1-mean(knnpred==testset$mpg01)
## [1] 0.1326531
I used the KNN method with 4 different values for K and the best test error was when k=3, which was 12.2%.
Using the Boston data set, fit classification models in order to predict whether a given census tract has a crime rate above or below the median. Explore logistic regression, LDA, naive Bayes, and KNN models using various subsets of the predictors. Describe your findings. Hint: You will have to create the response variable yourself, using the variables that are contained in the Boston data set.
Boston$crim1= rep("No", dim(Boston)[1])
Boston$crim1[Boston$crim>median(Boston$crim)]="Yes"
set.seed(1)
rows= sample(x=nrow(Boston), size=.75*nrow(Boston))
trainset= Boston[rows, ]
testset= Boston[-rows, ]
fit= glm(as.factor(crim1) ~ zn+indus+chas+nox+rm+age+dis+rad+tax+ptratio+black+lstat+medv, data=trainset, family="binomial")
prob= predict(fit, testset, type="response")
pred= rep("No", dim(testset)[1])
pred[prob > .5]= "Yes"
table(pred, testset$crim1)
##
## pred No Yes
## No 51 5
## Yes 12 59
1-mean(pred == testset$crim1)
## [1] 0.1338583
lfit= lda(as.factor(crim1) ~ zn+indus+chas+nox+rm+age+dis+rad+tax+ptratio+black+lstat+medv, data=trainset)
lpred= predict(lfit, testset)
table(lpred$class, testset$crim1)
##
## No Yes
## No 59 15
## Yes 4 49
1-mean(lpred$class==testset$crim1)
## [1] 0.1496063
nbfit= naiveBayes(as.factor(crim1) ~ zn+indus+chas+nox+rm+age+dis+rad+tax+ptratio+black+lstat+medv, data=trainset)
nbclass= predict(nbfit , testset)
table(nbclass, testset$crim1)
##
## nbclass No Yes
## No 59 18
## Yes 4 46
1-mean(nbclass==testset$crim1)
## [1] 0.1732283
Using logical regression I got a test error of 13.3%. The LDA got a test error of 14.9%. The naive bayes got a test error of 17.3%. So, out of the three methods the logical regression was the best.