Notes Home - Internal Only | Notation Home | Notation Basic | Notation-Algebra

A practice document to generate components of mathematical expressions, formulas and symbolic logic. These include numbers, fractions, operators, Latin letters, parentheses/brackets, exponents, sub/super-scripts, Greek letters, symbols and other elements.

In order to encourage learning from errors and avoiding same, error labels mark reasonable, but failed results. There may be LaTeX solutions to these errors and there may be better/preferred LaTeX commands and syntax to produce the desired results. My goal was to create demonstrable, re-usable results.

1 Embedded Notations

These appear within a line and begin with a single $ sign. This practice document displays results for various keyboard only, R code delimiter and LaTex approaches to notation:

1.1 Sizing

LaTeX uses the following 10 notations for font sizing:

1.\tiny 2.\scriptsize 3.\footnotesize 4.\small 5.\normalsize 6.\large 7.\Large 8.\LARGE 9.\huge 10.\Huge

Latex uses the following 4 notations for sizing parentheses: 1. \big 2.\Big 3.\bigg 4.\Bigg

1.2 Numbers

text: 0 1 2 3 4 5 6 7 8 9
code delimiters: 0 1 2 3 4 5 6 7 8 9
html/markdown: **0 1 2 3 4 5 6 7 8 9** to produce bold 0 1 2 3 4 5 6 7 8 9 and *0 1 2 3 4 5 6 7 8 9* to produce italic 0 1 2 3 4 5 6 7 8 9
inline keyboard: $0 1 2 3 4 5 6 7 8 9$ to produce \(0 1 2 3 4 5 6 7 8 9\)

Note below the failure of \big applied to numbers (and all other keyboard characters)

R LaTeX Syntax Result
$\big 0 1 2 3 4 5 6 7 8 9$ \(\big 0 1 2 3 4 5 6 7 8 9\) error
$\Big 0 1 2 3 4 5 6 7 8 9$ \(\Big 0 1 2 3 4 5 6 7 8 9\) error
$\bigg 0 1 2 3 4 5 6 7 8 9$ \(\bigg 0 1 2 3 4 5 6 7 8 9\) error
$\Bigg 0 1 2 3 4 5 6 7 8 9$ \(\Bigg 0 1 2 3 4 5 6 7 8 9\) error
$\large 0 1 2 3 4 5 6 7 8 9$ \(\large 0 1 2 3 4 5 6 7 8 9\)
$\Large 0 1 2 3 4 5 6 7 8 9$ \(\Large 0 1 2 3 4 5 6 7 8 9\)
$\LARGE 0 1 2 3 4 5 6 7 8 9$ \(\LARGE 0 1 2 3 4 5 6 7 8 9\)
$\huge 0 1 2 3 4 5 6 7 8 9$ \(\huge 0 1 2 3 4 5 6 7 8 9\)
$\Huge 0 1 2 3 4 5 6 7 8 9 $ \(\Huge 0 1 2 3 4 5 6 7 8 9\)

Top

1.2.1 Fractions

text: 1/4
code delimiters: 1/4
html/markdown: **1/4** to produce 1/4 in bold and *1/4* to produce 1/4 in italic
inline keyboard: \(1/4\)
inline LaTeX: $1 \over 4$ to produce \(1 \over 4\) alternatively $\frac{1}{4}$ to produce \(\frac{1}{4}\) or $\dfrac{1}{4}$ to produce the larger \(\dfrac{1}{4}\)

Top

1.2.2 Exponents / Super-scripts / Index / Power

text: 8 to the power of 3; 8^3; 8 * 8 * 8; 8 sup 3
code delimiters: 8^3;8*8*8
html: 8 <sup> 3 </sup> produces 8 3
inline keyboard: $8^3$ ; $8 * 8 * 8$ ; $8 sup 3$ produces \(8^3\) ; \(8 * 8 * 8\) ; \(8 sup 3\)
inline latex: $8^{3}$ produces \(8^{3}\)

Top

1.2.2.1 Exponents with Negative Numbers / Reciprocals

text: 8 to the power of -3; 8^-3; -8 * -8 * -8; 8 sup -3
code delimiters: 8^-3;-8 * -8 *-8
html: 8 <sup> -3 </sup> produces 8 -3
inline keyboard: $8^-3$ ; $-8 * -8 * -8$ ; $8 sup -3$ produces \(8^-3\) (error); \(-8 * -8 * -8\) ; \(8 sup -3\)
inline latex: $8^{-3}$ produces \(8^{-3}\)

Top

1.2.3 Sub-scripts

text: 8_3; 8 sub 3
code delimiters: 8_3;8 sub 3
html: 8 <sub> 3 </sub> produces 8 3
inline keyboard: $8_3$ ; $8 sub 3$ produces \(8_3\); \(8 sub 3\)
inline latex: $8_{3}$ produces \(8_{3}\)

Top

1.3 Multiplication, Division, Square Root Basics

Multiplication:
text: (X * Y) or (x * y)
code delimiters: (X * Y) or (x * y)
inline keyboard: \((X * Y)\) or \((x * y)\)
inline LaTeX: $x \times y$ | \(x \times y\) or $X \times Y$ | \(X \times Y\)
inline LaTeX Large: $\Large x \times y$ | \(\Large x \times y\) or $\Large X \times Y$ | \(\Large X \times Y\)

Division:
text: Y/X or y/x
code delimiters: X/Y or x/y
inline keyboard: \(X/Y\) or \(x/y\)
inline LaTeX: $X \div Y$ | \(X \div Y\) or $x \div y$ | \(x \div y\)
inline LaTeX Large: $\Large X \div Y$ | \(\Large X \div Y\) or $\Large x \div y | \(\Large x \div y\)

Square Roots:
text: sqare root of 3
code delimiters: square root of 3
inline keyboard: $square root of 3$ | \(square root of 3\) (error)
inline LaTeX: $\sqrt{3}$ | \(\sqrt{3}\)
inline LateX Large: $\Large \sqrt{3}$ | \(\Large \sqrt{3}\)

Top

1.4 Letters

Some of the more common letters used in math expressions and formulas.

lower case text no markup: a b c d e f m n p q r s t v w x y z
upper case text no markup: A B C D E F M N P Q R S T V W X Y Z
code delimiters: a b c d e f m n p q r s t v w x y z and A B C D E F M N P Q R S T V W X Y Z
inline keyboard: $a b c d e f m n p q r s t v w x y z$ to produce \(a b c d e f m n p q r s t v w x y z\)
and $A B C D E F M N P Q R S T V W X Y Z$ to produce \(A B C D E F M N P Q R S T V W X Y Z\)

R LaTeX Syntax Result
$\large a b c d e f i m n p q r s t v w x y z$ \(\large a b c d e f i m n p q r s t v w x y z\)
$\Large a b c d e f i m n p q r s t v w x y z$ \(\Large a b c d e f i m n p q r s t v w x y z\)
$\LARGE a b c d e f i m n p q r s t v w x y z$ \(\LARGE a b c d e f i m n p q r s t v w x y z\)
$\huge a b c d e f i m n p q r s t v w x y z$ \(\huge a b c d e f i m n p q r s t v w x y z\)
$\Huge a b c d e f i m n p q r s t v w x y z$ \(\Huge a b c d e f i m n p q r s t v w x y z\)
$\large A B C D E F I M N P Q R S T V W X Y Z$ \(\large A B C D E F I M N P Q R S T V W X Y Z\)
$\Large A B C D E F I M N P Q R S T V W X Y Z$ \(\Large A B C D E F I M N P Q R S T V W X Y Z\)
$\LARGE A B C D E F I M N P Q R S T V W X Y Z$ \(\LARGE A B C D E F I M N P Q R S T V W X Y Z\)
$\huge A B C D E F I M N P Q R S T V W X Y Z$ \(\huge A B C D E F I M N P Q R S T V W X Y Z\)
$\Huge A B C D E F I M N P Q R S T V W X Y Z $ \(\Huge A B C D E F I M N P Q R S T V W X Y Z\)

Top

1.5 Set and Logic Operators

Note that generating double struck letters requires specific reference to the LaTex \mathbb{set} command.

Description R LaTeX Syntax Result
the empty set $\emptyset$,$\varnothing$ \(\emptyset\) , \(\varnothing\)
set of natural numbers $\mathbb{N}$ \(\mathbb{N}\)
set of integers $\mathbb{Z}$ \(\mathbb{Z}\)
set of rational numbers $\mathbb{Q}$ \(\mathbb{Q}\)
set of algebraic numbers $\mathbb{A}$ \(\mathbb{A}\)
set of real numbers $\mathbb{R}$ \(\mathbb{R}\)
set of complex numbers $\mathbb{C}$ \(\mathbb{C}\)
is a member of $\in$ \(\in\)
is not a member of $\notin$ \(\notin\)
owns (has member) $\ni$ \(\ni\)
is proper subset of $\subset$ \(\subset\)
is subset of $\subseteq$ \(\subseteq\)
is proper superset of $\supset$ \(\supset\)
is superset of $\supseteq$ \(\supseteq\)
set union $\cup$ \(\cup\)
set intersection $\cap$ \(\cap\)
set difference $\setminus$ \(\setminus\)
there exists at least one $\exists$ \(\exists\)
there exists one and only one $\exists!$ \(\exists!\)
there is no $\nexists$ \(\nexists\)
for all $\forall$ \(\forall\)
not (logical NOT) $\neg$ \(\neg\)
or (logical OR) $\lor$ \(\lor\)
and (logical AND) $\land$ \(\land\)
implies $\implies$ \(\implies\)
(preferred right implication) $\Rightarrow$ \(\Rightarrow\)
is implied by (only if) $\Longleftarrow$ \(\Longleftarrow\)
(preferred left implication) $\Leftarrow$ \(\Leftarrow\)
is equivalent to (if and only if, iff) $\iff$ \(\iff\)
(preferred equivalence) $\Leftrightarrow$ \(\Leftrightarrow\)
top $\top$ \(\top\)
bottom $\bot$ \(\bot\)

Top

1.6 Operators - Unary, Binary, Relation

Unary operators work on only 1 operand. For example, +2, -5, 5!. Binary ones represent calculation on two operands. Most common are the addition, subtraction, multiplication and division of elementary math. For example, (2 - 5), 18/3, etc. Relational ones compare two sets of values.

1.6.1 Operators avialable within standard keyboards

text: + - / * = <> => =< ~ ! # $ % ^ + <>
code delimiters: + - / * = <> => =< ~ ! # % ^ + <>
inline keyboard: $+$ $-$ $/$ $*$ to produce \(+\) \(-\) \(/\) \(*\)
$=$ $<>$ $=>$ $=<$ to produce \(=\) \(<>\) \(=>\) \(=<\)
$~$ $!$ $#$ $%$ $^$ to produce \(~\) error \(!\) \(#\) \(%\) error \(^\)

Most operators respond to the \tiny to \Huge sizing commands. The # % ^ symbols require \text

R LaTeX Syntax Result
$\tiny +$ $\tiny -$ $\tiny /$ $\tiny *$ $\tiny =$ \(\tiny +\) \(\tiny -\) \(\tiny /\) \(\tiny *\) \(\tiny =\)
$\tiny <>$ $\tiny =>$ $\tiny =<$ $\tiny ~$ $\tiny !$ \(\tiny <>\) \(\tiny =>\) \(\tiny =<\) \(\tiny ~\) \(\tiny !\)
$\tiny \text #$ $\tiny \text %$ $\tiny \text ^$ \(\tiny \text #\) \(\tiny \text %\) \(\tiny \text ^\)
$\Huge +$ $\Huge -$ $\Huge /$ $\Huge *$ $\Huge =$ \(\Huge +\) \(\Huge -\) \(\Huge /\) \(\Huge *\) \(\Huge =\)
$\Huge <>$ $\Huge =>$ $\Huge =<$ $\Huge ~$ $\Huge !$ \(\Huge <>\) \(\Huge =>\) \(\Huge =<\) \(\Huge ~\) \(\Huge !\)
$\Huge \text #$ $\Huge \text \text %$ $\Huge \text ^$ \(\Huge \text #\) \(\Huge \text %\) \(\Huge \text ^\)

Top

1.6.2 Unary Operators using LaTeX

Description R LaTeX Syntax Result
plus $+$ \(+\)
minus $-$ \(-\)
factorial $!$ \(!\)
primorial $\#$ \(\#\)
negation $-$ \(-\)
not $\neg$ \(\neg\)

1.6.3 Binary Operators using LaTeX

Description R LaTeX Syntax Result
plus or minus $\pm$ \(\pm\)
minus or plus $\mp$ \(\mp\)
mulitplied by $\times$ \(\times\)
divided by $\div$ \(\div\)
asterisk $\ast$ \(*\)
star $\star$ \(\star\)
dagger $\dagger$ \(\dagger\)
double dagger $\ddagger$ \(\ddagger\)
set intersection $\cap$ \(\cap\)
set union $\cup$ \(\cup\)
set difference $\setminus$ \(\setminus\)
multiset addition $\uplus$ \(\uplus\)
square cap $\sqcap$ \(\sqcap\)
square cup $\sqcup$ \(\sqcup\)
logical or $\vee$ \(\vee\)
logical and $\wedge$ \(\wedge\)
cdot $\cdot$ \(\cdot\)
diamond $\diamond$ \(\diamond\)
big triangle up $\bigtriangleup$ \(\bigtriangleup\)
big triangle down $\bigtriangledown$ \(\bigtriangledown\)
triangle left $\triangleleft$ \(\triangleleft\)
triangle right $\triangleright$ \(\triangleright\)
big circle $\bigcirc$ \(\bigcirc\)
circle $\circ$ \(\circ\)
bullet $\bullet$ $$
wr $\wr$ \(\wr\)
o plus $\oplus$ \(\oplus\)
o minus $\ominus$ \(\ominus\)
o times $\otimes$ \(\otimes\)
o slash $\oslash$ \(\oslash\)
o dot $\odot$ \(\odot\)
?? $\amalg$ \(\amalg\)

Top

1.6.4 Negated Binary Operators

Note multiple options for some operators.

Description R LaTeX Syntax Result
is not equal to $\ne$ \(\ne\)
is not less than $\nless$ \(\nless\)
is not less than or equal to $\nleq$ \(\nleq\)
is not less than or equal to $\nleqslant$ \(\nleqslant\)
is not less than or equal to $\nleqq$ \(\nleqq\)
is not less than or equal to $\lneq$ \(\lneq\)
is not less than or equal to $\lneqq$ \(\lneqq\)
is not less than or equal to $\lvertneqq$ \(\lvertneqq\)
is less than or similar to $\lnsim$ \(\lnsim\)
is less than or approximately equal to $\lnapprox$ \(\lnapprox\)
does not precede $\nprec$ \(\nprec\)
neither precedes or equals $\npreceq$ \(\npreceq\)
is not similar to $\nsim$ \(\nsim\)
not a subset of or equal to $\nsubseteq$ \(\nsubseteq\)
not a subset of or equal to $\nsubseteqq$ \(\nsubseteqq\)
subset not equal to $\subsetneq$ \(\subsetneq\)
subset not equal to $\varsubsetneq$ \(\varsubsetneq\)
subset not equal to $\subsetneqq$ \(\subsetneqq\)
subset not equal to $\varsubsetneqq$ \(\varsubsetneqq\)
is not a member of $\notin$ \(\notin\)
is not greater than $\ngtr$ \(\ngtr\)
is not greater than or equal to $\ngeq$ \(\ngeq\)
is not greater than or eqaul to $\ngeqslant$ \(\ngeqslant\)
is not greater than or equal to $\ngeqq$ \(\ngeqq\)
is greater than not equal to $\gneq$ \(\gneq\)
is greater than not equal to $\gvertneqq$ \(\gvertneqq\)
is greater than not similar to $\gnsim$ \(\gnsim\)
is greater than not approximate to $\gnapprox$ \(\gnapprox\)
does not succeed $\nsucc$ \(\nsucc\)
neither succeeds or equals $\nsucceq$ \(\nsucceq\)
succeeds but does not equal $\succneqq$ \(\succneqq\)
succeeds but is not similar to $\succnsim$ \(\succnsim\)
succeeds but is not approximate to $\succnapprox$ \(\succnapprox\)
is not congruent to $\ncong$ \(\ncong\)
is not parallel to $\nparallel$ \(\nparallel\)
not a superset of or equal to $\nsupseteq$ \(\nsupseteq\)
not a superset of or equal to $\nsupseteqq$ \(\nsupseteqq\)
superset of not equal to $\supsetneq$ \(\supsetneq\)
superset of not equal to $\varsupsetneq$ \(\varsupsetneq\)
superset of not equal to $\supsetneqq$ \(\supsetneqq\)
superset of not equal to $\varsupsetneqq$ \(\varsupsetneqq\)

Top

1.7 Brackets

text: (something) or [something] or {something}
code delimiters: (something) or [something] or {something}
inline keyboard: \((something)\) or \([something]\) or $\{something\}$ to produce \(\{something\}\)

Top

1.7.1 LaTeX - Parentheses Sizing and Type

Sizes: $\big( \Big( \bigg( \Bigg( \large( \Large( \LARGE( \huge( \Huge($ |\(\big( \Big( \bigg( \Bigg( \large( \Large( \LARGE( \huge( \Huge(\)
Note the \big syntax applies to the parenthesis character immediately following. The math expression inside remains the same size. At times desirable; most times not.

Applying the \large and \huge syntax results in equal sizing to both the parenthesis and the math expressions within them. LaTeX instructions are to use the \left and \right commands before the braces. As the display table for Square brackets illustrates, leaving these out has no impact in rmarkdown.

Each table below illustrates display results from both types of syntax.

1.7.1.1 Parentheses

R LaTeX Syntax Result
$\big( 3x+7 \big)$ \(\big( 3x+7 \big)\)
$\Big( 3x+7 \Big)$ \(\Big( 3x+7 \Big)\)
$\bigg( 3x+7 \bigg)$ \(\bigg( 3x+7 \bigg)\)
$\Bigg( 3x+7 \Bigg)$ \(\Bigg( 3x+7 \Bigg)\)
$\large \left ( 3x+7 \right)$ \(\large \left ( 3x+7 \right)\)
$\Large \left ( 3x+7 \right)$ \(\Large \left ( 3x+7 \right)\)
$\LARGE \left ( 3x+7 \right)$ \(\LARGE \left ( 3x+7 \right)\)
$\huge \left ( 3x+7 \right)$ \(\huge \left ( 3x+7 \right)\)
$\Huge \left ( 3x+7 \right)$ \(\Huge \left ( 3x+7 \right)\)

Top

1.7.1.2 Square Brackets

Note the successful omission of \left and \right

R LaTeX Syntax Result
$\big[ 3x+7 \big]$ \(\big[ 3x+7 \big]\)
$\Big[ 3x+7 \Big]$ \(\Big[ 3x+7 \Big]\)
$\bigg[ 3x+7 \bigg]$ \(\bigg[ 3x+7 \bigg]\)
$\Bigg[ 3x+7 \Bigg]$ \(\Bigg[ 3x+7 \Bigg]\)
$\large [ 3x+7 ]$ \(\large [ 3x+7 ]\)
$\Large [ 3x+7 ]$ \(\Large [ 3x+7 ]\)
$\LARGE [ 3x+7 ]$ \(\LARGE [ 3x+7 ]\)
$\huge [ 3x+7 ]$ \(\huge [ 3x+7 ]\)
$\Huge [ 3x+7 ]$ \(\Huge [ 3x+7 ]\)

Top

1.7.1.3 Curly Brackets

Note {} brackets require escape backslash \

R LaTeX Syntax | Result ——– | —— $\big\{ 3x+7 \big\}$ | \(\big\{ 3x+7 \big\}\)
$\Big\{ 3x+7 \Big\}$ | \(\Big\{ 3x+7 \Big\}\)
$\bigg\{ 3x+7 \bigg\}$ | \(\bigg\{ 3x+7 \bigg\}\)
$\Bigg\{ 3x+7 \Bigg\}$ | \(\Bigg\{ 3x+7 \Bigg\}\)
$\large \{ 3x+7 \right\}$ | \(\large \left \{ 3x+7 \right\}\) $\Large \left \{ 3x+7 \right\}$ | \(\Large \left \{ 3x+7 \right\}\) $\LARGE \left \{ 3x+7 \right\}$ | \(\LARGE \left \{ 3x+7 \right\}\) $\huge \left \{ 3x+7 \\right\}$ | \(\huge \left \{ 3x+7 \right\}\) $\Huge \left \{ 3x+7 \\right\}$ | \(\Huge \left \{ 3x+7 \right\}\)

Top

1.7.2 Angle Brackets

Note use of \langle and \rangle for left and right side.

R LaTeX Syntax Result
$\big \langle 3x+7 \big \rangle$ \(\big \langle 3x+7 \big \rangle\)
$\Big \langle 3x+7 \Big \rangle$ \(\Big \langle 3x+7 \Big \rangle\)
$\bigg \langle 3x+7 \Big \rangle$ \(\bigg \langle 3x+7 \Big \rangle\)
$\Bigg \langle 3x+7 \Bigg \rangle$ \(\Bigg \langle 3x+7 \Bigg \rangle\)
$\large \left \langle 3x+7 \right\rangle$ \(\large \left \langle 3x+7 \right\rangle\)
$\Large \left \langle 3x+7 \right\rangle$ \(\Large \left \langle 3x+7 \right\rangle\)
$\LARGE \left \langle 3x+7 \right\rangle$ \(\LARGE \left \langle 3x+7 \right\rangle\)
$\huge \left \langle 3x+7 \right\rangle$ \(\huge \left \langle 3x+7 \right\rangle\)
$\Huge \left \langle 3x+7 \right\rangle$ \(\Huge \left \langle 3x+7 \right\rangle\)

Top

1.8 Brackets with Fractions

Note the use of \displaystyle to create even sized components of the fractions. Using \Large by itself results in larger display but uneven fractional components. Combining \displaystyle \Large or \large creates the desired result.

Displaying fractions can be done with \over or \frac {x}{y}. \over works well with single fractions but not with formulas.

R LaTeX Syntax Result
$a \left( b \over c \right) = ab \over c$ \(a \left( b \over c \right) = ab \over c\) error
$\displaystyle a \left( \frac{b}{c} \right) = \frac {ab}{c}$ \(\displaystyle a \left( \frac{b}{c} \right) = \frac {ab}{c}\)
$\Large a \left( \frac{b}{c} \right)= \frac {ab}{c}$ \(\Large a \left( \frac{b}{c} \right)= \frac {ab}{c}\)
$\displaystyle \large a \left( \frac{b}{c} \right)= \frac {ab}{c}$ \(\displaystyle \large a \left( \frac{b}{c} \right)= \frac {ab}{c}\)
$\displaystyle \Large a \left( \frac{b}{c} \right)= \frac {ab}{c}$ \(\displaystyle \Large a \left( \frac{b}{c} \right)= \frac {ab}{c}\)

1.9 Select Greek Letters

1.9.1 Small

Description R syntax Result
alpha $\small \alpha$ \(\small \alpha\)
Alpha $\small A$ \(\small A\)
beta $\small \beta$ \(\small \beta\)
Beta $\small B$ \(\small B\)
gamma $\small \gamma$ \(\small \gamma\)
Gamma $\small \Gamma$ \(\small \Gamma\)
delta $\small \delta$ \(\small \delta\)
Delta $\small \Delta$ \(\small \Delta\)
epsilon $\small \epsilon$ \(\small \epsilon\)
Epsilon $\small E$ \(\small E\)
zeta $\small \zeta$ \(\small \zeta\)
Zeta $\small Z$ \(\small Z\)
eta $\small \eta$ \(\small \eta\)
Eta $\small H$ \(\small H\)
theta $\small \theta$ \(\small \theta\)
Theta $\small \Theta$ \(\small \Theta\)
lambda $\small \lamda$ \(\small \lambda\)
Lambda $\small \lamda$ \(\small \Lambda\)
mu $\small \mu$ \(\small \mu\)
Mu $\small M$ \(\small M\)
nu $\small \nu$ \(\small \nu\)
Nu $\small N$ \(\small N\)
xi $\small \xi$ \(\small \xi\)
Xi $\small \Xi$ \(\small \Xi\)
pi $\small \pi$ \(\small \pi\)
Pi $\small \Pi$ \(\small \Pi\)
rho $\small \rho$ \(\small \rho\)
Rho $\small P$ \(\small P\)
sigma $\small \sigma$ \(\small \sigma\)
Sigma $\small \Sigma$ \(\small \Sigma\)
tau $\small \tau$ \(\small \tau\)
Tau $\small T$ \(\small T\)
upsilon $\small \upsilon$ \(\small \upsilon\)
Upsilon $\small \Upsilon$ \(\small \Upsilon\)
phi $\small \phi$ \(\small \phi\)
Phi $\small \Phi$ \(\small \Phi\)
chi $\small \chi$ \(\small \chi\)
Chi $\small X$ \(\small X\)
psi $\small \psi$ \(\small \psi\)
Psi $\small \Psi$ \(\small \Psi\)
omega $\small \omega$ \(\small \omega\)
Omega $\small \Omega$ \(\small \Omega\)

Top

1.9.2 Large

Description R syntax Result
alpha $\Large \alpha$ \(\Large \alpha\)
Alpha $\Large A$ \(\Large A\)
beta $\Large \beta$ \(\Large \beta\)
Beta $\Large B$ \(\Large B\)
gamma $\Large \gamma$ \(\Large \gamma\)
Gamma $\Large \Gamma$ \(\Large \Gamma\)
delta $\Large \delta$ \(\Large \delta\)
Delta $\Large \Delta$ \(\Large \Delta\)
epsilon $\Large \epsilon$ \(\Large \epsilon\)
Epsilon $\Large E$ \(\Large E\)
zeta $\Large \zeta$ \(\Large \zeta\)
Zeta $\Large Z$ \(\Large Z\)
eta $\Large \eta$ \(\Large \eta\)
Eta $\Large H$ \(\Large H\)
theta $\Large \theta$ \(\Large \theta\)
Theta $\Large \Theta$ \(\Large \Theta\)
lambda $\Large \lamda$ \(\Large \lambda\)
Lambda $\Large \lamda$ \(\Large \Lambda\)
mu $\Large \mu$ \(\Large \mu\)
Mu $\Large M$ \(\Large M\)
nu $\Large \nu$ \(\Large \nu\)
Nu $\Large N$ \(\Large N\)
xi $\Large \xi$ \(\Large \xi\)
Xi $\Large \Xi$ \(\Large \Xi\)
pi $\Large \pi$ \(\Large \pi\)
Pi $\Large \Pi$ \(\Large \Pi\)
rho $\Large \rho$ \(\Large \rho\)
Rho $\Large P$ \(\Large P\)
sigma $\Large \sigma$ \(\Large \sigma\)
Sigma $\Large \Sigma$ \(\Large \Sigma\)
tau $\Large \tau$ \(\Large \tau\)
Tau $\Large T$ \(\Large T\)
upsilon $\Large \upsilon$ \(\Large \upsilon\)
Upsilon $\Large \Upsilon$ \(\Large \Upsilon\)
phi $\Large \phi$ \(\Large \phi\)
Phi $\Large \Phi$ \(\Large \Phi\)
chi $\Large \chi$ \(\Large \chi\)
Chi $\Large X$ \(\Large X\)
psi $\Large \psi$ \(\Large \psi\)
Psi $\Large \Psi$ \(\Large \Psi\)
omega $\Large \omega$ \(\Large \omega\)
Omega $\Large \Omega$ \(\Large \Omega\)

Top

1.10 Select Symbols and Operators

1.10.1 Small

Description R syntax Result
infinity $\small \ \infty$ \(\small \infty\)
for all $\small \forall$ \(\small \forall\)
exists $\small \exists$ \(\small \exists\)
not exists $\small \nexists$ \(\small \nexists\)
partial $\small \partial$ \(\small \partial\)
emptyset $\small \emptyset$ \(\small \emptyset\)
null nothing $\small \varnothing$ \(\small \varnothing\)
complement $\small \complement$ \(\small \complement\)
negation: $\small \neg$ \(\small \neg\)
continuation $\small \cdots$ \(\small \cdots\)
surd $\small \surd$ \(\small \surd\)
union $\small A \cup B$ \(\small A \cup B\)
intersect $\small A \cap B$ \(\small A \cap B\)
not equal $\small \neq$ \(\small \neq\)
less than or equal to $\small \leq$ \(\small \leq\)
greater than or equal to $\small \geq$ \(\small \geq\)
in $\small \in$ \(\small \in\)
not in $\small \notin$ \(\small \notin\)
perpendicular $\small \perp$ \(\small \perp\)
subset $\small \subset$ \(\small \subset\)
similar or equal to $\small \simeq$ \(\small \simeq\)
approximates $\small \approx$ \(\small \approx\)
equivalence / identical to $\small \equiv$ \(\small \equiv\)
congruent $\small \cong$ \(\small \cong\)

Top

1.10.2 Large

Description R syntax Result
infinity $\Large \infty$ \(\Large \infty\)
for all $\Large \forall$ \(\Large \forall\)
exists $\Large \exists$ \(\Large \exists\)
not exists $\Large \nexists$ \(\Large \nexists\)
partial $\Large \partial$ \(\Large \partial\)
emptyset $\Large \emptyset$ \(\Large \emptyset\)
null nothing $\Large \varnothing$ \(\Large \varnothing\)
complement $\Large \complement$ \(\Large \complement\)
negation: $\Large \neg$ \(\Large \neg\)
continuation $\Large \cdots$ \(\Large \cdots\)
surd $\Large \surd$ \(\Large \surd\)
union $\Large A \cup B$ \(\Large A \cup B\)
intersect $\Large A \cap B$ \(\Large A \cap B\)
not equal $\Large \neq$ \(\Large \neq\)
less than or equal to $\Large \leq$ \(\Large \leq\)
greater than or equal to $\Large \geq$ \(\Large \geq\)
in $\Large \in$ \(\Large \in\)
not in $\Large \notin$ \(\Large \notin\)
perpendicular $\Large \perp$ \(\Large \perp\)
subset $\Large \subset$ \(\Large \subset\)
similar or equal to $\Large \simeq$ \(\Large \simeq\)
approximates $\Large \approx$ \(\Large \approx\)
equivalence / identical to $\Large \equiv$ \(\Large \equiv\)
congruent $\Large \cong$ \(\Large \cong\)

Top

2 References

http://johnmacfarlane.net/pandoc/demo/example9/pandocs-markdown.html
http://tutorial.math.lamar.edu/pdf/Algebra_Cheat_Sheet.pdf
http://oeis.org/wiki/List_of_LaTeX_mathematical_symbols
http://texblog.org/2007/08/27/number-sets-prime-natural-integer-rational-real-and-complex-in-latex/ http://en.wikipedia.org/wiki/Unary_operation
http://en.wikipedia.org/wiki/Binary_operation
https://www.sharelatex.com/learn/Brackets_and_Parentheses#Introduction
http://www.math.uiuc.edu/~hildebr/tex/course/intro2.html http://simple.wikipedia.org/wiki/Exponent
http://legacy.earlham.edu/~peters/writing/infapp.htm (notes on sets)
https://www.khanacademy.org/math/probability/independent-dependent-probability/basic_set_operations/v/subset-strict-subset-and-superset

3 Dev Notes

While the double dollar sign (still) works in LaTeX, it is not part of the “official” LaTeX command set (in fact, most books on LaTeX don’t even mention it) and its use is discouraged. Use the bracket pair \[, \] instead.) see - http://tex.stackexchange.com/questions/503/why-is-preferable-to

TODO: create Notation-Algebra; Notation-Formula (Stat, Geometry, Algebra, Probability); Notation - Calculus

sessionInfo()
## R version 3.2.1 (2015-06-18)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 8 x64 (build 9200)
## 
## locale:
## [1] LC_COLLATE=English_Canada.1252  LC_CTYPE=English_Canada.1252   
## [3] LC_MONETARY=English_Canada.1252 LC_NUMERIC=C                   
## [5] LC_TIME=English_Canada.1252    
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## loaded via a namespace (and not attached):
##  [1] magrittr_1.5    formatR_1.2     tools_3.2.1     htmltools_0.2.6
##  [5] yaml_2.1.13     stringi_0.5-5   rmarkdown_0.7   knitr_1.10.5   
##  [9] stringr_1.0.0   digest_0.6.8    evaluate_0.7

May you do good and not evil.
May you find forgiveness for yourself and forgive others.
May you share freely, never taking more than you give.

https://github.com/mielniczuk/Notation