Notes Home - Internal Only | Notation Home | Notation Basic | Notation-Algebra
A practice document to generate components of mathematical expressions, formulas and symbolic logic. These include numbers, fractions, operators, Latin letters, parentheses/brackets, exponents, sub/super-scripts, Greek letters, symbols and other elements.
In order to encourage learning from errors and avoiding same, error labels mark reasonable, but failed results. There may be LaTeX solutions to these errors and there may be better/preferred LaTeX commands and syntax to produce the desired results. My goal was to create demonstrable, re-usable results.
These appear within a line and begin with a single $
sign. This practice document displays results for various keyboard only, R code delimiter and LaTex approaches to notation:
LaTeX uses the following 10 notations for font sizing:
1.\tiny 2.\scriptsize 3.\footnotesize 4.\small 5.\normalsize 6.\large 7.\Large 8.\LARGE 9.\huge 10.\Huge
Latex uses the following 4 notations for sizing parentheses: 1. \big 2.\Big 3.\bigg 4.\Bigg
text: 0 1 2 3 4 5 6 7 8 9
code delimiters: 0 1 2 3 4 5 6 7 8 9
html/markdown: **0 1 2 3 4 5 6 7 8 9**
to produce bold 0 1 2 3 4 5 6 7 8 9 and *0 1 2 3 4 5 6 7 8 9*
to produce italic 0 1 2 3 4 5 6 7 8 9
inline keyboard: $0 1 2 3 4 5 6 7 8 9$
to produce \(0 1 2 3 4 5 6 7 8 9\)
Note below the failure of \big
applied to numbers (and all other keyboard characters)
R LaTeX Syntax | Result |
---|---|
$\big 0 1 2 3 4 5 6 7 8 9$ |
\(\big 0 1 2 3 4 5 6 7 8 9\) error |
$\Big 0 1 2 3 4 5 6 7 8 9$ |
\(\Big 0 1 2 3 4 5 6 7 8 9\) error |
$\bigg 0 1 2 3 4 5 6 7 8 9$ |
\(\bigg 0 1 2 3 4 5 6 7 8 9\) error |
$\Bigg 0 1 2 3 4 5 6 7 8 9$ |
\(\Bigg 0 1 2 3 4 5 6 7 8 9\) error |
$\large 0 1 2 3 4 5 6 7 8 9$ |
\(\large 0 1 2 3 4 5 6 7 8 9\) |
$\Large 0 1 2 3 4 5 6 7 8 9$ |
\(\Large 0 1 2 3 4 5 6 7 8 9\) |
$\LARGE 0 1 2 3 4 5 6 7 8 9$ |
\(\LARGE 0 1 2 3 4 5 6 7 8 9\) |
$\huge 0 1 2 3 4 5 6 7 8 9$ |
\(\huge 0 1 2 3 4 5 6 7 8 9\) |
$\Huge 0 1 2 3 4 5 6 7 8 9 $ |
\(\Huge 0 1 2 3 4 5 6 7 8 9\) |
text: 1/4
code delimiters: 1/4
html/markdown: **1/4**
to produce 1/4 in bold and *1/4*
to produce 1/4 in italic
inline keyboard: \(1/4\)
inline LaTeX: $1 \over 4$
to produce \(1 \over 4\) alternatively $\frac{1}{4}$
to produce \(\frac{1}{4}\) or $\dfrac{1}{4}$
to produce the larger \(\dfrac{1}{4}\)
text: 8 to the power of 3; 8^3; 8 * 8 * 8; 8 sup 3
code delimiters: 8^3
;8*8*8
html: 8 <sup> 3 </sup>
produces 8 3
inline keyboard: $8^3$ ; $8 * 8 * 8$ ; $8 sup 3$
produces \(8^3\) ; \(8 * 8 * 8\) ; \(8 sup 3\)
inline latex: $8^{3}$
produces \(8^{3}\)
text: 8 to the power of -3; 8^-3; -8 * -8 * -8; 8 sup -3
code delimiters: 8^-3
;-8 * -8 *-8
html: 8 <sup> -3 </sup>
produces 8 -3
inline keyboard: $8^-3$ ; $-8 * -8 * -8$ ; $8 sup -3$
produces \(8^-3\) (error); \(-8 * -8 * -8\) ; \(8 sup -3\)
inline latex: $8^{-3}$
produces \(8^{-3}\)
text: 8_3; 8 sub 3
code delimiters: 8_3
;8 sub 3
html: 8 <sub> 3 </sub>
produces 8 3
inline keyboard: $8_3$ ; $8 sub 3$
produces \(8_3\); \(8 sub 3\)
inline latex: $8_{3}$
produces \(8_{3}\)
Multiplication:
text: (X * Y) or (x * y)
code delimiters: (X * Y)
or (x * y)
inline keyboard: \((X * Y)\) or \((x * y)\)
inline LaTeX: $x \times y$
| \(x \times y\) or $X \times Y$
| \(X \times Y\)
inline LaTeX Large: $\Large x \times y$
| \(\Large x \times y\) or $\Large X \times Y$
| \(\Large X \times Y\)
Division:
text: Y/X or y/x
code delimiters: X/Y
or x/y
inline keyboard: \(X/Y\) or \(x/y\)
inline LaTeX: $X \div Y$
| \(X \div Y\) or $x \div y$
| \(x \div y\)
inline LaTeX Large: $\Large X \div Y$
| \(\Large X \div Y\) or $\Large x \div y
| \(\Large x \div y\)
Square Roots:
text: sqare root of 3
code delimiters: square root of 3
inline keyboard: $square root of 3$
| \(square root of 3\) (error)
inline LaTeX: $\sqrt{3}$
| \(\sqrt{3}\)
inline LateX Large: $\Large \sqrt{3}$
| \(\Large \sqrt{3}\)
Some of the more common letters used in math expressions and formulas.
lower case text no markup: a b c d e f m n p q r s t v w x y z
upper case text no markup: A B C D E F M N P Q R S T V W X Y Z
code delimiters: a b c d e f m n p q r s t v w x y z
and A B C D E F M N P Q R S T V W X Y Z
inline keyboard: $a b c d e f m n p q r s t v w x y z$
to produce \(a b c d e f m n p q r s t v w x y z\)
and $A B C D E F M N P Q R S T V W X Y Z$
to produce \(A B C D E F M N P Q R S T V W X Y Z\)
R LaTeX Syntax | Result |
---|---|
$\large a b c d e f i m n p q r s t v w x y z$ |
\(\large a b c d e f i m n p q r s t v w x y z\) |
$\Large a b c d e f i m n p q r s t v w x y z$ |
\(\Large a b c d e f i m n p q r s t v w x y z\) |
$\LARGE a b c d e f i m n p q r s t v w x y z$ |
\(\LARGE a b c d e f i m n p q r s t v w x y z\) |
$\huge a b c d e f i m n p q r s t v w x y z$ |
\(\huge a b c d e f i m n p q r s t v w x y z\) |
$\Huge a b c d e f i m n p q r s t v w x y z$ |
\(\Huge a b c d e f i m n p q r s t v w x y z\) |
$\large A B C D E F I M N P Q R S T V W X Y Z$ |
\(\large A B C D E F I M N P Q R S T V W X Y Z\) |
$\Large A B C D E F I M N P Q R S T V W X Y Z$ |
\(\Large A B C D E F I M N P Q R S T V W X Y Z\) |
$\LARGE A B C D E F I M N P Q R S T V W X Y Z$ |
\(\LARGE A B C D E F I M N P Q R S T V W X Y Z\) |
$\huge A B C D E F I M N P Q R S T V W X Y Z$ |
\(\huge A B C D E F I M N P Q R S T V W X Y Z\) |
$\Huge A B C D E F I M N P Q R S T V W X Y Z $ |
\(\Huge A B C D E F I M N P Q R S T V W X Y Z\) |
Note that generating double struck letters requires specific reference to the LaTex \mathbb{set}
command.
Description | R LaTeX Syntax | Result |
---|---|---|
the empty set | $\emptyset$ ,$\varnothing$ |
\(\emptyset\) , \(\varnothing\) |
set of natural numbers | $\mathbb{N}$ |
\(\mathbb{N}\) |
set of integers | $\mathbb{Z}$ |
\(\mathbb{Z}\) |
set of rational numbers | $\mathbb{Q}$ |
\(\mathbb{Q}\) |
set of algebraic numbers | $\mathbb{A}$ |
\(\mathbb{A}\) |
set of real numbers | $\mathbb{R}$ |
\(\mathbb{R}\) |
set of complex numbers | $\mathbb{C}$ |
\(\mathbb{C}\) |
is a member of | $\in$ |
\(\in\) |
is not a member of | $\notin$ |
\(\notin\) |
owns (has member) | $\ni$ |
\(\ni\) |
is proper subset of | $\subset$ |
\(\subset\) |
is subset of | $\subseteq$ |
\(\subseteq\) |
is proper superset of | $\supset$ |
\(\supset\) |
is superset of | $\supseteq$ |
\(\supseteq\) |
set union | $\cup$ |
\(\cup\) |
set intersection | $\cap$ |
\(\cap\) |
set difference | $\setminus$ |
\(\setminus\) |
there exists at least one | $\exists$ |
\(\exists\) |
there exists one and only one | $\exists!$ |
\(\exists!\) |
there is no | $\nexists$ |
\(\nexists\) |
for all | $\forall$ |
\(\forall\) |
not (logical NOT) | $\neg$ |
\(\neg\) |
or (logical OR) | $\lor$ |
\(\lor\) |
and (logical AND) | $\land$ |
\(\land\) |
implies | $\implies$ |
\(\implies\) |
(preferred right implication) | $\Rightarrow$ |
\(\Rightarrow\) |
is implied by (only if) | $\Longleftarrow$ |
\(\Longleftarrow\) |
(preferred left implication) | $\Leftarrow$ |
\(\Leftarrow\) |
is equivalent to (if and only if, iff) | $\iff$ |
\(\iff\) |
(preferred equivalence) | $\Leftrightarrow$ |
\(\Leftrightarrow\) |
top | $\top$ |
\(\top\) |
bottom | $\bot$ |
\(\bot\) |
Unary operators work on only 1 operand. For example, +2, -5, 5!. Binary ones represent calculation on two operands. Most common are the addition, subtraction, multiplication and division of elementary math. For example, (2 - 5), 18/3, etc. Relational ones compare two sets of values.
text: + - / * = <> => =< ~ ! # $ % ^ + <>
code delimiters: + - / * = <> => =< ~ ! # % ^ + <>
inline keyboard: $+$ $-$ $/$ $*$
to produce \(+\) \(-\) \(/\) \(*\)$=$ $<>$ $=>$ $=<$
to produce \(=\) \(<>\) \(=>\) \(=<\)$~$ $!$ $#$ $%$ $^$
to produce \(~\) error \(!\) \(#\) \(%\) error \(^\)
Most operators respond to the \tiny to \Huge
sizing commands. The # % ^
symbols require \text
R LaTeX Syntax | Result |
---|---|
$\tiny +$ $\tiny -$ $\tiny /$ $\tiny *$ $\tiny =$ |
\(\tiny +\) \(\tiny -\) \(\tiny /\) \(\tiny *\) \(\tiny =\) |
$\tiny <>$ $\tiny =>$ $\tiny =<$ $\tiny ~$ $\tiny !$ |
\(\tiny <>\) \(\tiny =>\) \(\tiny =<\) \(\tiny ~\) \(\tiny !\) |
$\tiny \text #$ $\tiny \text %$ $\tiny \text ^$ |
\(\tiny \text #\) \(\tiny \text %\) \(\tiny \text ^\) |
$\Huge +$ $\Huge -$ $\Huge /$ $\Huge *$ $\Huge =$ |
\(\Huge +\) \(\Huge -\) \(\Huge /\) \(\Huge *\) \(\Huge =\) |
$\Huge <>$ $\Huge =>$ $\Huge =<$ $\Huge ~$ $\Huge !$ |
\(\Huge <>\) \(\Huge =>\) \(\Huge =<\) \(\Huge ~\) \(\Huge !\) |
$\Huge \text #$ $\Huge \text \text %$ $\Huge \text ^$ |
\(\Huge \text #\) \(\Huge \text %\) \(\Huge \text ^\) |
Description | R LaTeX Syntax | Result |
---|---|---|
plus | $+$ |
\(+\) |
minus | $-$ |
\(-\) |
factorial | $!$ |
\(!\) |
primorial | $\#$ |
\(\#\) |
negation | $-$ |
\(-\) |
not | $\neg$ |
\(\neg\) |
Description | R LaTeX Syntax | Result |
---|---|---|
plus or minus | $\pm$ |
\(\pm\) |
minus or plus | $\mp$ |
\(\mp\) |
mulitplied by | $\times$ |
\(\times\) |
divided by | $\div$ |
\(\div\) |
asterisk | $\ast$ |
\(*\) |
star | $\star$ |
\(\star\) |
dagger | $\dagger$ |
\(\dagger\) |
double dagger | $\ddagger$ |
\(\ddagger\) |
set intersection | $\cap$ |
\(\cap\) |
set union | $\cup$ |
\(\cup\) |
set difference | $\setminus$ |
\(\setminus\) |
multiset addition | $\uplus$ |
\(\uplus\) |
square cap | $\sqcap$ |
\(\sqcap\) |
square cup | $\sqcup$ |
\(\sqcup\) |
logical or | $\vee$ |
\(\vee\) |
logical and | $\wedge$ |
\(\wedge\) |
cdot | $\cdot$ |
\(\cdot\) |
diamond | $\diamond$ |
\(\diamond\) |
big triangle up | $\bigtriangleup$ |
\(\bigtriangleup\) |
big triangle down | $\bigtriangledown$ |
\(\bigtriangledown\) |
triangle left | $\triangleleft$ |
\(\triangleleft\) |
triangle right | $\triangleright$ |
\(\triangleright\) |
big circle | $\bigcirc$ |
\(\bigcirc\) |
circle | $\circ$ |
\(\circ\) |
bullet | $\bullet$ |
$$ |
wr | $\wr$ |
\(\wr\) |
o plus | $\oplus$ |
\(\oplus\) |
o minus | $\ominus$ |
\(\ominus\) |
o times | $\otimes$ |
\(\otimes\) |
o slash | $\oslash$ |
\(\oslash\) |
o dot | $\odot$ |
\(\odot\) |
?? | $\amalg$ |
\(\amalg\) |
Note multiple options for some operators.
Description | R LaTeX Syntax | Result |
---|---|---|
is not equal to | $\ne$ |
\(\ne\) |
is not less than | $\nless$ |
\(\nless\) |
is not less than or equal to | $\nleq$ |
\(\nleq\) |
is not less than or equal to | $\nleqslant$ |
\(\nleqslant\) |
is not less than or equal to | $\nleqq$ |
\(\nleqq\) |
is not less than or equal to | $\lneq$ |
\(\lneq\) |
is not less than or equal to | $\lneqq$ |
\(\lneqq\) |
is not less than or equal to | $\lvertneqq$ |
\(\lvertneqq\) |
is less than or similar to | $\lnsim$ |
\(\lnsim\) |
is less than or approximately equal to | $\lnapprox$ |
\(\lnapprox\) |
does not precede | $\nprec$ |
\(\nprec\) |
neither precedes or equals | $\npreceq$ |
\(\npreceq\) |
is not similar to | $\nsim$ |
\(\nsim\) |
not a subset of or equal to | $\nsubseteq$ |
\(\nsubseteq\) |
not a subset of or equal to | $\nsubseteqq$ |
\(\nsubseteqq\) |
subset not equal to | $\subsetneq$ |
\(\subsetneq\) |
subset not equal to | $\varsubsetneq$ |
\(\varsubsetneq\) |
subset not equal to | $\subsetneqq$ |
\(\subsetneqq\) |
subset not equal to | $\varsubsetneqq$ |
\(\varsubsetneqq\) |
is not a member of | $\notin$ |
\(\notin\) |
is not greater than | $\ngtr$ |
\(\ngtr\) |
is not greater than or equal to | $\ngeq$ |
\(\ngeq\) |
is not greater than or eqaul to | $\ngeqslant$ |
\(\ngeqslant\) |
is not greater than or equal to | $\ngeqq$ |
\(\ngeqq\) |
is greater than not equal to | $\gneq$ |
\(\gneq\) |
is greater than not equal to | $\gvertneqq$ |
\(\gvertneqq\) |
is greater than not similar to | $\gnsim$ |
\(\gnsim\) |
is greater than not approximate to | $\gnapprox$ |
\(\gnapprox\) |
does not succeed | $\nsucc$ |
\(\nsucc\) |
neither succeeds or equals | $\nsucceq$ |
\(\nsucceq\) |
succeeds but does not equal | $\succneqq$ |
\(\succneqq\) |
succeeds but is not similar to | $\succnsim$ |
\(\succnsim\) |
succeeds but is not approximate to | $\succnapprox$ |
\(\succnapprox\) |
is not congruent to | $\ncong$ |
\(\ncong\) |
is not parallel to | $\nparallel$ |
\(\nparallel\) |
not a superset of or equal to | $\nsupseteq$ |
\(\nsupseteq\) |
not a superset of or equal to | $\nsupseteqq$ |
\(\nsupseteqq\) |
superset of not equal to | $\supsetneq$ |
\(\supsetneq\) |
superset of not equal to | $\varsupsetneq$ |
\(\varsupsetneq\) |
superset of not equal to | $\supsetneqq$ |
\(\supsetneqq\) |
superset of not equal to | $\varsupsetneqq$ |
\(\varsupsetneqq\) |
text: (something) or [something] or {something}
code delimiters: (something)
or [something]
or {something}
inline keyboard: \((something)\) or \([something]\) or $\{something\}$
to produce \(\{something\}\)
Sizes: $\big( \Big( \bigg( \Bigg( \large( \Large( \LARGE( \huge( \Huge($ |
\(\big( \Big( \bigg( \Bigg( \large( \Large( \LARGE( \huge( \Huge(\)
Note the \big
syntax applies to the parenthesis character immediately following. The math expression inside remains the same size. At times desirable; most times not.
Applying the \large and \huge
syntax results in equal sizing to both the parenthesis and the math expressions within them. LaTeX instructions are to use the \left
and \right
commands before the braces. As the display table for Square brackets illustrates, leaving these out has no impact in rmarkdown.
Each table below illustrates display results from both types of syntax.
R LaTeX Syntax | Result |
---|---|
$\big( 3x+7 \big)$ |
\(\big( 3x+7 \big)\) |
$\Big( 3x+7 \Big)$ |
\(\Big( 3x+7 \Big)\) |
$\bigg( 3x+7 \bigg)$ |
\(\bigg( 3x+7 \bigg)\) |
$\Bigg( 3x+7 \Bigg)$ |
\(\Bigg( 3x+7 \Bigg)\) |
$\large \left ( 3x+7 \right)$ |
\(\large \left ( 3x+7 \right)\) |
$\Large \left ( 3x+7 \right)$ |
\(\Large \left ( 3x+7 \right)\) |
$\LARGE \left ( 3x+7 \right)$ |
\(\LARGE \left ( 3x+7 \right)\) |
$\huge \left ( 3x+7 \right)$ |
\(\huge \left ( 3x+7 \right)\) |
$\Huge \left ( 3x+7 \right)$ |
\(\Huge \left ( 3x+7 \right)\) |
Note the successful omission of \left
and \right
R LaTeX Syntax | Result |
---|---|
$\big[ 3x+7 \big]$ |
\(\big[ 3x+7 \big]\) |
$\Big[ 3x+7 \Big]$ |
\(\Big[ 3x+7 \Big]\) |
$\bigg[ 3x+7 \bigg]$ |
\(\bigg[ 3x+7 \bigg]\) |
$\Bigg[ 3x+7 \Bigg]$ |
\(\Bigg[ 3x+7 \Bigg]\) |
$\large [ 3x+7 ]$ |
\(\large [ 3x+7 ]\) |
$\Large [ 3x+7 ]$ |
\(\Large [ 3x+7 ]\) |
$\LARGE [ 3x+7 ]$ |
\(\LARGE [ 3x+7 ]\) |
$\huge [ 3x+7 ]$ |
\(\huge [ 3x+7 ]\) |
$\Huge [ 3x+7 ]$ |
\(\Huge [ 3x+7 ]\) |
Note {} brackets require escape backslash \
R LaTeX Syntax | Result ——– | —— $\big\{ 3x+7 \big\}$
| \(\big\{ 3x+7 \big\}\)$\Big\{ 3x+7 \Big\}$
| \(\Big\{ 3x+7 \Big\}\)$\bigg\{ 3x+7 \bigg\}$
| \(\bigg\{ 3x+7 \bigg\}\)$\Bigg\{ 3x+7 \Bigg\}$
| \(\Bigg\{ 3x+7 \Bigg\}\)$\large \{ 3x+7 \right\}$
| \(\large \left \{ 3x+7 \right\}\) $\Large \left \{ 3x+7 \right\}$
| \(\Large \left \{ 3x+7 \right\}\) $\LARGE \left \{ 3x+7 \right\}$
| \(\LARGE \left \{ 3x+7 \right\}\) $\huge \left \{ 3x+7 \\right\}$
| \(\huge \left \{ 3x+7 \right\}\) $\Huge \left \{ 3x+7 \\right\}$
| \(\Huge \left \{ 3x+7 \right\}\)
Note use of \langle
and \rangle
for left and right side.
R LaTeX Syntax | Result |
---|---|
$\big \langle 3x+7 \big \rangle$ |
\(\big \langle 3x+7 \big \rangle\) |
$\Big \langle 3x+7 \Big \rangle$ |
\(\Big \langle 3x+7 \Big \rangle\) |
$\bigg \langle 3x+7 \Big \rangle$ |
\(\bigg \langle 3x+7 \Big \rangle\) |
$\Bigg \langle 3x+7 \Bigg \rangle$ |
\(\Bigg \langle 3x+7 \Bigg \rangle\) |
$\large \left \langle 3x+7 \right\rangle$ |
\(\large \left \langle 3x+7 \right\rangle\) |
$\Large \left \langle 3x+7 \right\rangle$ |
\(\Large \left \langle 3x+7 \right\rangle\) |
$\LARGE \left \langle 3x+7 \right\rangle$ |
\(\LARGE \left \langle 3x+7 \right\rangle\) |
$\huge \left \langle 3x+7 \right\rangle$ |
\(\huge \left \langle 3x+7 \right\rangle\) |
$\Huge \left \langle 3x+7 \right\rangle$ |
\(\Huge \left \langle 3x+7 \right\rangle\) |
Note the use of \displaystyle
to create even sized components of the fractions. Using \Large
by itself results in larger display but uneven fractional components. Combining \displaystyle \Large
or \large
creates the desired result.
Displaying fractions can be done with \over
or \frac {x}{y}
. \over
works well with single fractions but not with formulas.
R LaTeX Syntax | Result |
---|---|
$a \left( b \over c \right) = ab \over c$ |
\(a \left( b \over c \right) = ab \over c\) error |
$\displaystyle a \left( \frac{b}{c} \right) = \frac {ab}{c}$ |
\(\displaystyle a \left( \frac{b}{c} \right) = \frac {ab}{c}\) |
$\Large a \left( \frac{b}{c} \right)= \frac {ab}{c}$ |
\(\Large a \left( \frac{b}{c} \right)= \frac {ab}{c}\) |
$\displaystyle \large a \left( \frac{b}{c} \right)= \frac {ab}{c}$ |
\(\displaystyle \large a \left( \frac{b}{c} \right)= \frac {ab}{c}\) |
$\displaystyle \Large a \left( \frac{b}{c} \right)= \frac {ab}{c}$ |
\(\displaystyle \Large a \left( \frac{b}{c} \right)= \frac {ab}{c}\) |
Description | R syntax | Result |
---|---|---|
alpha | $\small \alpha$ |
\(\small \alpha\) |
Alpha | $\small A$ |
\(\small A\) |
beta | $\small \beta$ |
\(\small \beta\) |
Beta | $\small B$ |
\(\small B\) |
gamma | $\small \gamma$ |
\(\small \gamma\) |
Gamma | $\small \Gamma$ |
\(\small \Gamma\) |
delta | $\small \delta$ |
\(\small \delta\) |
Delta | $\small \Delta$ |
\(\small \Delta\) |
epsilon | $\small \epsilon$ |
\(\small \epsilon\) |
Epsilon | $\small E$ |
\(\small E\) |
zeta | $\small \zeta$ |
\(\small \zeta\) |
Zeta | $\small Z$ |
\(\small Z\) |
eta | $\small \eta$ |
\(\small \eta\) |
Eta | $\small H$ |
\(\small H\) |
theta | $\small \theta$ |
\(\small \theta\) |
Theta | $\small \Theta$ |
\(\small \Theta\) |
lambda | $\small \lamda$ |
\(\small \lambda\) |
Lambda | $\small \lamda$ |
\(\small \Lambda\) |
mu | $\small \mu$ |
\(\small \mu\) |
Mu | $\small M$ |
\(\small M\) |
nu | $\small \nu$ |
\(\small \nu\) |
Nu | $\small N$ |
\(\small N\) |
xi | $\small \xi$ |
\(\small \xi\) |
Xi | $\small \Xi$ |
\(\small \Xi\) |
pi | $\small \pi$ |
\(\small \pi\) |
Pi | $\small \Pi$ |
\(\small \Pi\) |
rho | $\small \rho$ |
\(\small \rho\) |
Rho | $\small P$ |
\(\small P\) |
sigma | $\small \sigma$ |
\(\small \sigma\) |
Sigma | $\small \Sigma$ |
\(\small \Sigma\) |
tau | $\small \tau$ |
\(\small \tau\) |
Tau | $\small T$ |
\(\small T\) |
upsilon | $\small \upsilon$ |
\(\small \upsilon\) |
Upsilon | $\small \Upsilon$ |
\(\small \Upsilon\) |
phi | $\small \phi$ |
\(\small \phi\) |
Phi | $\small \Phi$ |
\(\small \Phi\) |
chi | $\small \chi$ |
\(\small \chi\) |
Chi | $\small X$ |
\(\small X\) |
psi | $\small \psi$ |
\(\small \psi\) |
Psi | $\small \Psi$ |
\(\small \Psi\) |
omega | $\small \omega$ |
\(\small \omega\) |
Omega | $\small \Omega$ |
\(\small \Omega\) |
Description | R syntax | Result |
---|---|---|
alpha | $\Large \alpha$ |
\(\Large \alpha\) |
Alpha | $\Large A$ |
\(\Large A\) |
beta | $\Large \beta$ |
\(\Large \beta\) |
Beta | $\Large B$ |
\(\Large B\) |
gamma | $\Large \gamma$ |
\(\Large \gamma\) |
Gamma | $\Large \Gamma$ |
\(\Large \Gamma\) |
delta | $\Large \delta$ |
\(\Large \delta\) |
Delta | $\Large \Delta$ |
\(\Large \Delta\) |
epsilon | $\Large \epsilon$ |
\(\Large \epsilon\) |
Epsilon | $\Large E$ |
\(\Large E\) |
zeta | $\Large \zeta$ |
\(\Large \zeta\) |
Zeta | $\Large Z$ |
\(\Large Z\) |
eta | $\Large \eta$ |
\(\Large \eta\) |
Eta | $\Large H$ |
\(\Large H\) |
theta | $\Large \theta$ |
\(\Large \theta\) |
Theta | $\Large \Theta$ |
\(\Large \Theta\) |
lambda | $\Large \lamda$ |
\(\Large \lambda\) |
Lambda | $\Large \lamda$ |
\(\Large \Lambda\) |
mu | $\Large \mu$ |
\(\Large \mu\) |
Mu | $\Large M$ |
\(\Large M\) |
nu | $\Large \nu$ |
\(\Large \nu\) |
Nu | $\Large N$ |
\(\Large N\) |
xi | $\Large \xi$ |
\(\Large \xi\) |
Xi | $\Large \Xi$ |
\(\Large \Xi\) |
pi | $\Large \pi$ |
\(\Large \pi\) |
Pi | $\Large \Pi$ |
\(\Large \Pi\) |
rho | $\Large \rho$ |
\(\Large \rho\) |
Rho | $\Large P$ |
\(\Large P\) |
sigma | $\Large \sigma$ |
\(\Large \sigma\) |
Sigma | $\Large \Sigma$ |
\(\Large \Sigma\) |
tau | $\Large \tau$ |
\(\Large \tau\) |
Tau | $\Large T$ |
\(\Large T\) |
upsilon | $\Large \upsilon$ |
\(\Large \upsilon\) |
Upsilon | $\Large \Upsilon$ |
\(\Large \Upsilon\) |
phi | $\Large \phi$ |
\(\Large \phi\) |
Phi | $\Large \Phi$ |
\(\Large \Phi\) |
chi | $\Large \chi$ |
\(\Large \chi\) |
Chi | $\Large X$ |
\(\Large X\) |
psi | $\Large \psi$ |
\(\Large \psi\) |
Psi | $\Large \Psi$ |
\(\Large \Psi\) |
omega | $\Large \omega$ |
\(\Large \omega\) |
Omega | $\Large \Omega$ |
\(\Large \Omega\) |
Description | R syntax | Result |
---|---|---|
infinity | $\small \ \infty$ |
\(\small \infty\) |
for all | $\small \forall$ |
\(\small \forall\) |
exists | $\small \exists$ |
\(\small \exists\) |
not exists | $\small \nexists$ |
\(\small \nexists\) |
partial | $\small \partial$ |
\(\small \partial\) |
emptyset | $\small \emptyset$ |
\(\small \emptyset\) |
null nothing | $\small \varnothing$ |
\(\small \varnothing\) |
complement | $\small \complement$ |
\(\small \complement\) |
negation: | $\small \neg$ |
\(\small \neg\) |
continuation | $\small \cdots$ |
\(\small \cdots\) |
surd | $\small \surd$ |
\(\small \surd\) |
union | $\small A \cup B$ |
\(\small A \cup B\) |
intersect | $\small A \cap B$ |
\(\small A \cap B\) |
not equal | $\small \neq$ |
\(\small \neq\) |
less than or equal to | $\small \leq$ |
\(\small \leq\) |
greater than or equal to | $\small \geq$ |
\(\small \geq\) |
in | $\small \in$ |
\(\small \in\) |
not in | $\small \notin$ |
\(\small \notin\) |
perpendicular | $\small \perp$ |
\(\small \perp\) |
subset | $\small \subset$ |
\(\small \subset\) |
similar or equal to | $\small \simeq$ |
\(\small \simeq\) |
approximates | $\small \approx$ |
\(\small \approx\) |
equivalence / identical to | $\small \equiv$ |
\(\small \equiv\) |
congruent | $\small \cong$ |
\(\small \cong\) |
Description | R syntax | Result |
---|---|---|
infinity | $\Large \infty$ |
\(\Large \infty\) |
for all | $\Large \forall$ |
\(\Large \forall\) |
exists | $\Large \exists$ |
\(\Large \exists\) |
not exists | $\Large \nexists$ |
\(\Large \nexists\) |
partial | $\Large \partial$ |
\(\Large \partial\) |
emptyset | $\Large \emptyset$ |
\(\Large \emptyset\) |
null nothing | $\Large \varnothing$ |
\(\Large \varnothing\) |
complement | $\Large \complement$ |
\(\Large \complement\) |
negation: | $\Large \neg$ |
\(\Large \neg\) |
continuation | $\Large \cdots$ |
\(\Large \cdots\) |
surd | $\Large \surd$ |
\(\Large \surd\) |
union | $\Large A \cup B$ |
\(\Large A \cup B\) |
intersect | $\Large A \cap B$ |
\(\Large A \cap B\) |
not equal | $\Large \neq$ |
\(\Large \neq\) |
less than or equal to | $\Large \leq$ |
\(\Large \leq\) |
greater than or equal to | $\Large \geq$ |
\(\Large \geq\) |
in | $\Large \in$ |
\(\Large \in\) |
not in | $\Large \notin$ |
\(\Large \notin\) |
perpendicular | $\Large \perp$ |
\(\Large \perp\) |
subset | $\Large \subset$ |
\(\Large \subset\) |
similar or equal to | $\Large \simeq$ |
\(\Large \simeq\) |
approximates | $\Large \approx$ |
\(\Large \approx\) |
equivalence / identical to | $\Large \equiv$ |
\(\Large \equiv\) |
congruent | $\Large \cong$ |
\(\Large \cong\) |
http://johnmacfarlane.net/pandoc/demo/example9/pandocs-markdown.html
http://tutorial.math.lamar.edu/pdf/Algebra_Cheat_Sheet.pdf
http://oeis.org/wiki/List_of_LaTeX_mathematical_symbols
http://texblog.org/2007/08/27/number-sets-prime-natural-integer-rational-real-and-complex-in-latex/ http://en.wikipedia.org/wiki/Unary_operation
http://en.wikipedia.org/wiki/Binary_operation
https://www.sharelatex.com/learn/Brackets_and_Parentheses#Introduction
http://www.math.uiuc.edu/~hildebr/tex/course/intro2.html http://simple.wikipedia.org/wiki/Exponent
http://legacy.earlham.edu/~peters/writing/infapp.htm (notes on sets)
https://www.khanacademy.org/math/probability/independent-dependent-probability/basic_set_operations/v/subset-strict-subset-and-superset
While the double dollar sign (still) works in LaTeX, it is not part of the “official” LaTeX command set (in fact, most books on LaTeX don’t even mention it) and its use is discouraged. Use the bracket pair \[, \]
instead.) see - http://tex.stackexchange.com/questions/503/why-is-preferable-to
TODO: create Notation-Algebra; Notation-Formula (Stat, Geometry, Algebra, Probability); Notation - Calculus
sessionInfo()
## R version 3.2.1 (2015-06-18)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 8 x64 (build 9200)
##
## locale:
## [1] LC_COLLATE=English_Canada.1252 LC_CTYPE=English_Canada.1252
## [3] LC_MONETARY=English_Canada.1252 LC_NUMERIC=C
## [5] LC_TIME=English_Canada.1252
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## loaded via a namespace (and not attached):
## [1] magrittr_1.5 formatR_1.2 tools_3.2.1 htmltools_0.2.6
## [5] yaml_2.1.13 stringi_0.5-5 rmarkdown_0.7 knitr_1.10.5
## [9] stringr_1.0.0 digest_0.6.8 evaluate_0.7
May you do good and not evil.
May you find forgiveness for yourself and forgive others.
May you share freely, never taking more than you give.