## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## âś” ggplot2 3.4.1     âś” purrr   1.0.1
## âś” tibble  3.1.8     âś” dplyr   1.1.0
## âś” tidyr   1.3.0     âś” stringr 1.5.0
## âś” readr   2.1.4     âś” forcats 1.0.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## âś– dplyr::filter() masks stats::filter()
## âś– dplyr::lag()    masks stats::lag()
## 
## Attaching package: 'MASS'
## 
## 
## The following object is masked from 'package:ISLR2':
## 
##     Boston
## 
## 
## The following object is masked from 'package:dplyr':
## 
##     select

##Question 13

  1. This question should be answered using the Weekly data set, which is part of the ISLR2 package. This data is similar in nature to the Smarket data from this chapter’s lab, except that it contains 1, 089 weekly returns for 21 years, from the beginning of 1990 to the end of
  1. Produce some numerical and graphical summaries of the Weekly data. Do there appear to be any patterns?
summary(Weekly)
##       Year           Lag1               Lag2               Lag3         
##  Min.   :1990   Min.   :-18.1950   Min.   :-18.1950   Min.   :-18.1950  
##  1st Qu.:1995   1st Qu.: -1.1540   1st Qu.: -1.1540   1st Qu.: -1.1580  
##  Median :2000   Median :  0.2410   Median :  0.2410   Median :  0.2410  
##  Mean   :2000   Mean   :  0.1506   Mean   :  0.1511   Mean   :  0.1472  
##  3rd Qu.:2005   3rd Qu.:  1.4050   3rd Qu.:  1.4090   3rd Qu.:  1.4090  
##  Max.   :2010   Max.   : 12.0260   Max.   : 12.0260   Max.   : 12.0260  
##       Lag4               Lag5              Volume            Today         
##  Min.   :-18.1950   Min.   :-18.1950   Min.   :0.08747   Min.   :-18.1950  
##  1st Qu.: -1.1580   1st Qu.: -1.1660   1st Qu.:0.33202   1st Qu.: -1.1540  
##  Median :  0.2380   Median :  0.2340   Median :1.00268   Median :  0.2410  
##  Mean   :  0.1458   Mean   :  0.1399   Mean   :1.57462   Mean   :  0.1499  
##  3rd Qu.:  1.4090   3rd Qu.:  1.4050   3rd Qu.:2.05373   3rd Qu.:  1.4050  
##  Max.   : 12.0260   Max.   : 12.0260   Max.   :9.32821   Max.   : 12.0260  
##  Direction 
##  Down:484  
##  Up  :605  
##            
##            
##            
## 
pairs(Weekly)

It looks like there is an exponential relationship between volume and year. Most of the Lag variables look the same. Nothing else really stands out.

  1. Use the full data set to perform a logistic regression with Direction as the response and the five lag variables plus Volume as predictors. Use the summary function to print the results. Do any of the predictors appear to be statistically significant? If so, which ones?
logreg <- glm(Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + Volume, family = 'binomial', data = Weekly)

summary(logreg)
## 
## Call:
## glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + 
##     Volume, family = "binomial", data = Weekly)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6949  -1.2565   0.9913   1.0849   1.4579  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  0.26686    0.08593   3.106   0.0019 **
## Lag1        -0.04127    0.02641  -1.563   0.1181   
## Lag2         0.05844    0.02686   2.175   0.0296 * 
## Lag3        -0.01606    0.02666  -0.602   0.5469   
## Lag4        -0.02779    0.02646  -1.050   0.2937   
## Lag5        -0.01447    0.02638  -0.549   0.5833   
## Volume      -0.02274    0.03690  -0.616   0.5377   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1496.2  on 1088  degrees of freedom
## Residual deviance: 1486.4  on 1082  degrees of freedom
## AIC: 1500.4
## 
## Number of Fisher Scoring iterations: 4

It looks like the Intercept and Lag2 are significant at the \(\alpha\) = .05 level.

  1. Compute the confusion matrix and overall fraction of correct predictions. Explain what the confusion matrix is telling you about the types of mistakes made by logistic regression.
prob <- predict(logreg, type = 'response')
confusion <- rep("Down", 1089)
confusion[prob > .5] = 'Up'
table(confusion, Weekly$Direction)
##          
## confusion Down  Up
##      Down   54  48
##      Up    430 557

This confusion matrix is saying that we’re classifying 56.1065% of the observations correctly. We are misclassifying 478 observations. It seems like our model most often sorts Up and very rarely sorts Down.

  1. Now fit the logistic regression model using a training data period from 1990 to 2008, with Lag2 as the only predictor. Compute the confusion matrix and the overall fraction of correct predictions for the held out data (that is, the data from 2009 and 2010).
training <- Weekly[Weekly$Year<2009,]
test <- Weekly[Weekly$Year>=2009,]

nlogreg <- glm(Direction ~ Lag2, data = training, family = 'binomial')

summary(nlogreg)
## 
## Call:
## glm(formula = Direction ~ Lag2, family = "binomial", data = training)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.536  -1.264   1.021   1.091   1.368  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  0.20326    0.06428   3.162  0.00157 **
## Lag2         0.05810    0.02870   2.024  0.04298 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1354.7  on 984  degrees of freedom
## Residual deviance: 1350.5  on 983  degrees of freedom
## AIC: 1354.5
## 
## Number of Fisher Scoring iterations: 4
testprob <- predict(nlogreg, type = 'response', newdata = test)

testold <- Weekly$Direction[Weekly$Year>=2009]

testprediction <- rep('Down', 104)
testprediction[testprob>.5] = "Up"
table(testprediction,testold)
##               testold
## testprediction Down Up
##           Down    9  5
##           Up     34 56

We are still overestimating Up, but our accuracy increased to 62.5% by using a training data set.

  1. Repeat (d) using LDA.
ldafit <-lda(Direction~Lag2, data = training)
ldafit
## Call:
## lda(Direction ~ Lag2, data = training)
## 
## Prior probabilities of groups:
##      Down        Up 
## 0.4477157 0.5522843 
## 
## Group means:
##             Lag2
## Down -0.03568254
## Up    0.26036581
## 
## Coefficients of linear discriminants:
##            LD1
## Lag2 0.4414162
ldapredict <- predict(ldafit, newdata = test, type = 'response')
ldaclass <- ldapredict$class
table(ldaclass, test$Direction)
##         
## ldaclass Down Up
##     Down    9  5
##     Up     34 56

This is the same as we just got using logistic regression.

  1. Repeat (d) using QDA.
qdafit <- qda(Direction ~ Lag2, data = training)
qdafit
## Call:
## qda(Direction ~ Lag2, data = training)
## 
## Prior probabilities of groups:
##      Down        Up 
## 0.4477157 0.5522843 
## 
## Group means:
##             Lag2
## Down -0.03568254
## Up    0.26036581
qdapredict <- predict(qdafit, newdata = test, type = 'response')
qdaclass <- qdapredict$class
table(qdaclass, test$Direction)
##         
## qdaclass Down Up
##     Down    0  0
##     Up     43 61

It appears that we overestimate for Up.We correctly classify 58.65% of our data.

  1. Repeat (d) using KNN with K = 1.
set.seed(10)

ktrainx <- cbind(training$Lag2)
ktestx <- cbind(test$Lag2)
ktrainy <- cbind(training$Direction)
knn1predict <- knn(ktrainx, ktestx, ktrainy, k =1)

table(knn1predict, test$Direction)
##            
## knn1predict Down Up
##           1   21 29
##           2   22 32

We have a correct classification rate of 50.96%.

  1. Repeat (d) using naive Bayes.
train=(Weekly$Year<2009)
weekly09 <- Weekly[!train,]
direction09 <- Weekly$Direction[!train]
nbayes=naiveBayes(Direction~Lag2 ,data=Weekly ,subset=train)
nbayes
## 
## Naive Bayes Classifier for Discrete Predictors
## 
## Call:
## naiveBayes.default(x = X, y = Y, laplace = laplace)
## 
## A-priori probabilities:
## Y
##      Down        Up 
## 0.4477157 0.5522843 
## 
## Conditional probabilities:
##       Lag2
## Y             [,1]     [,2]
##   Down -0.03568254 2.199504
##   Up    0.26036581 2.317485
nbayesclass <- predict(nbayes, weekly09)
table(nbayesclass, direction09)
##            direction09
## nbayesclass Down Up
##        Down    0  0
##        Up     43 61

This classifcation rate is the same as our qda model, around 58.65%

  1. Which of these methods appears to provide the best results on this data?

It appears that logistic regression is the best predictor for this data set at a 62.5% successful classification rate. This is of course without any transformations or interactions in the data.

  1. Experiment with different combinations of predictors, including possible transformations and interactions, for each of the methods. Report the variables, method, and associated confusion matrix that appears to provide the best results on the held out data. Note that you should also experiment with values for K in the KNN classifier.
log2 <- glm(Direction ~ Lag1*Lag2, data = Weekly, family = binomial, subset = train)
summary(log2)
## 
## Call:
## glm(formula = Direction ~ Lag1 * Lag2, family = binomial, data = Weekly, 
##     subset = train)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.573  -1.259   1.003   1.086   1.596  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  0.211419   0.064589   3.273  0.00106 **
## Lag1        -0.051505   0.030727  -1.676  0.09370 . 
## Lag2         0.053471   0.029193   1.832  0.06700 . 
## Lag1:Lag2    0.001921   0.007460   0.257  0.79680   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1354.7  on 984  degrees of freedom
## Residual deviance: 1346.9  on 981  degrees of freedom
## AIC: 1354.9
## 
## Number of Fisher Scoring iterations: 4
log2prob <- predict(log2, weekly09, type = 'response')
log2pred <- rep("Down", length(log2prob))
log2pred[log2prob>.5] = 'Up'
table(log2pred, direction09)
##         direction09
## log2pred Down Up
##     Down    7  8
##     Up     36 53

I added in the Lag1 variable and the interaction between Lag1 and Lag2 in the logistic regression model. It seems like it classifies 57.69% correct, which is worse than if we just used the Lag2 variable by itself.

lda2 <- lda(Direction ~ Lag1*Lag2, data = Weekly, family=binomial, subset=train)
lda2predict <- predict(lda2, weekly09)
table(lda2predict$class, direction09)
##       direction09
##        Down Up
##   Down    7  8
##   Up     36 53

This predicted the exact same as our logistic regression problem.

qda2 <- qda(Direction ~poly(Lag2,2), data =Weekly, subset = train)
gda2predict <- predict(qda2, weekly09)$class
table(gda2predict, direction09)
##            direction09
## gda2predict Down Up
##        Down    7  3
##        Up     36 58

By using a squared Lag2 in the model, we improve our accuracy to 62.5% where our all time best currenty resides.

knn5predict <- knn(ktrainx, ktestx, ktrainy, k =5)
knn10predict <- knn(ktrainx, ktestx, ktrainy, k =10)

table(knn5predict, test$Direction)
##            
## knn5predict Down Up
##           1   16 21
##           2   27 40
table(knn10predict, test$Direction)
##             
## knn10predict Down Up
##            1   17 19
##            2   26 42

Having a k=5 gives us an accuracy of 53.85% and k=10 gave us an accuracy of 56.73%. Overall, our inital logisitic regression model gave us the best accuracy of 62.5% We were able to replicate that by squaring our Lag2 term in qda.

##Question 14

  1. In this problem, you will develop a model to predict whether a given car gets high or low gas mileage based on the Auto data set.
  1. Create a binary variable, mpg01, that contains a 1 if mpg contains a value above its median, and a 0 if mpg contains a value below its median. You can compute the median using the median() function. Note you may find it helpful to use the data.frame() function to create a single data set containing both mpg01 and the other Auto variables.
mpg01 <- ifelse( Auto$mpg > median(Auto$mpg), yes = 1, no = 0)
Auto <- data.frame(Auto, mpg01)
head(Auto)
  1. Explore the data graphically in order to investigate the association between mpg01 and the other features. Which of the other features seem most likely to be useful in predicting mpg01? Scatterplots and boxplots may be useful tools to answer this question. Describe your findings.
cor(Auto[,-9])
##                     mpg  cylinders displacement horsepower     weight
## mpg           1.0000000 -0.7776175   -0.8051269 -0.7784268 -0.8322442
## cylinders    -0.7776175  1.0000000    0.9508233  0.8429834  0.8975273
## displacement -0.8051269  0.9508233    1.0000000  0.8972570  0.9329944
## horsepower   -0.7784268  0.8429834    0.8972570  1.0000000  0.8645377
## weight       -0.8322442  0.8975273    0.9329944  0.8645377  1.0000000
## acceleration  0.4233285 -0.5046834   -0.5438005 -0.6891955 -0.4168392
## year          0.5805410 -0.3456474   -0.3698552 -0.4163615 -0.3091199
## origin        0.5652088 -0.5689316   -0.6145351 -0.4551715 -0.5850054
## mpg01         0.8369392 -0.7591939   -0.7534766 -0.6670526 -0.7577566
##              acceleration       year     origin      mpg01
## mpg             0.4233285  0.5805410  0.5652088  0.8369392
## cylinders      -0.5046834 -0.3456474 -0.5689316 -0.7591939
## displacement   -0.5438005 -0.3698552 -0.6145351 -0.7534766
## horsepower     -0.6891955 -0.4163615 -0.4551715 -0.6670526
## weight         -0.4168392 -0.3091199 -0.5850054 -0.7577566
## acceleration    1.0000000  0.2903161  0.2127458  0.3468215
## year            0.2903161  1.0000000  0.1815277  0.4299042
## origin          0.2127458  0.1815277  1.0000000  0.5136984
## mpg01           0.3468215  0.4299042  0.5136984  1.0000000
pairs(Auto)

  1. Split the data into a training set and a test set.
trainb <- (Auto$year %% 2 == 0) #This picks an even year
testb <- !trainb

Atrain <- Auto[trainb,]
Atest <- Auto[testb,]
mpg01test <- mpg01[testb]
  1. Perform LDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?
ldampg <- lda(mpg01 ~ cylinders + weight + horsepower + displacement + year, data = Auto, subset = trainb)
ldapredictmpg <- predict(ldampg, Atest)
table(ldapredictmpg$class, mpg01test)
##    mpg01test
##      0  1
##   0 87  6
##   1 13 76
mean(ldapredictmpg$class != mpg01test)
## [1] 0.1043956
  1. Perform QDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?
qdampg <- qda(mpg01 ~ cylinders + weight + horsepower + displacement + year, data = Auto, subset = trainb)

qdapredict <- predict(qdampg, Atest)
table(qdapredict$class, mpg01test)
##    mpg01test
##      0  1
##   0 89 12
##   1 11 70
mean(qdapredict$class != mpg01test)
## [1] 0.1263736
  1. Perform logistic regression on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?
mpglog <- glm(mpg01~ cylinders + weight + horsepower + displacement + year, data = Atrain, family =binomial)
summary(mpglog)
## 
## Call:
## glm(formula = mpg01 ~ cylinders + weight + horsepower + displacement + 
##     year, family = binomial, data = Atrain)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.38487  -0.00601   0.01455   0.13620   1.76182  
## 
## Coefficients:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  -14.183575   7.621940  -1.861   0.0628 .  
## cylinders     -0.021014   0.767203  -0.027   0.9781    
## weight        -0.005155   0.001602  -3.217   0.0013 ** 
## horsepower    -0.050225   0.027943  -1.797   0.0723 .  
## displacement  -0.018794   0.018025  -1.043   0.2971    
## year           0.478279   0.122101   3.917 8.96e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 289.577  on 209  degrees of freedom
## Residual deviance:  58.285  on 204  degrees of freedom
## AIC: 70.285
## 
## Number of Fisher Scoring iterations: 9
logpredict <- predict(mpglog, Atest, type = 'response')
predmpg <- rep(0, length(logpredict))
predmpg[logpredict>.05] <- 1
table(predmpg, mpg01test)
##        mpg01test
## predmpg  0  1
##       0 79  3
##       1 21 79
mean(predmpg != mpg01test)
## [1] 0.1318681
  1. Perform naive Bayes on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?
n.bayes<- naiveBayes(mpg01 ~ cylinders + displacement + horsepower + weight + year, data = Atrain)
n.bayesclass <- predict(n.bayes, Atest)
table(n.bayesclass, mpg01test)
##             mpg01test
## n.bayesclass  0  1
##            0 88 11
##            1 12 71
mean(n.bayesclass != mpg01test)
## [1] 0.1263736
  1. Perform KNN on the training data, with several values of K, in order to predict mpg01. Use only the variables that seemed most associated with mpg01 in (b). What test errors do you obtain? Which value of K seems to perform the best on this data set?
#I was having trouble binding the data for KNN here for some reason, so I found some
#code online that took a different approach.
data = scale(Auto[,-c(9,10)])
set.seed(1)
train <- sample(1:dim(Auto)[1], 392*.7, rep=FALSE)

test <- -train
training_data = data[train,c("cylinders","horsepower","weight","acceleration")]
testing_data = data[test, c("cylinders", "horsepower","weight","acceleration")]

train.mpg01 = Auto$mpg01[train]

test.mpg01= Auto$mpg01[test]
set.seed(1)
knn_pred_y = knn(training_data, testing_data, train.mpg01, k = 1)
table(knn_pred_y, test.mpg01)
##           test.mpg01
## knn_pred_y  0  1
##          0 52 10
##          1  9 47
mean(knn_pred_y != test.mpg01)
## [1] 0.1610169
set.seed(1)
knn_pred_y = knn(training_data, testing_data, train.mpg01, k = 5)
table(knn_pred_y, test.mpg01)
##           test.mpg01
## knn_pred_y  0  1
##          0 51  4
##          1 10 53
mean(knn_pred_y != test.mpg01)
## [1] 0.1186441
set.seed(1)
knn_pred_y = knn(training_data, testing_data, train.mpg01, k = 15)
table(knn_pred_y, test.mpg01)
##           test.mpg01
## knn_pred_y  0  1
##          0 53  4
##          1  8 53
mean(knn_pred_y != test.mpg01)
## [1] 0.1016949
set.seed(1)
knn_pred_y = knn(training_data, testing_data, train.mpg01, k = 20)
table(knn_pred_y, test.mpg01)
##           test.mpg01
## knn_pred_y  0  1
##          0 53  4
##          1  8 53
mean(knn_pred_y != test.mpg01)
## [1] 0.1016949

It appears that the error rate stabilizes somewhere around 15. Increasing K>15 doesn’t seem to have a significant impact.

##Question 16

  1. Using the Boston data set, fit classification models in order to predict whether a given census tract has a crime rate above or below the median. Explore logistic regression, LDA, naive Bayes, and KNN models using various subsets of the predictors. Describe your findings. Hint: You will have to create the response variable yourself, using the variables that are contained in the Boston data set.
crime <- rep(0, length(Boston$crim))
crime[Boston$crim > median(Boston$crim)] <- 1
Boston<- data.frame(Boston,crime)
summary(Boston)
##       crim                zn             indus            chas        
##  Min.   : 0.00632   Min.   :  0.00   Min.   : 0.46   Min.   :0.00000  
##  1st Qu.: 0.08205   1st Qu.:  0.00   1st Qu.: 5.19   1st Qu.:0.00000  
##  Median : 0.25651   Median :  0.00   Median : 9.69   Median :0.00000  
##  Mean   : 3.61352   Mean   : 11.36   Mean   :11.14   Mean   :0.06917  
##  3rd Qu.: 3.67708   3rd Qu.: 12.50   3rd Qu.:18.10   3rd Qu.:0.00000  
##  Max.   :88.97620   Max.   :100.00   Max.   :27.74   Max.   :1.00000  
##       nox               rm             age              dis        
##  Min.   :0.3850   Min.   :3.561   Min.   :  2.90   Min.   : 1.130  
##  1st Qu.:0.4490   1st Qu.:5.886   1st Qu.: 45.02   1st Qu.: 2.100  
##  Median :0.5380   Median :6.208   Median : 77.50   Median : 3.207  
##  Mean   :0.5547   Mean   :6.285   Mean   : 68.57   Mean   : 3.795  
##  3rd Qu.:0.6240   3rd Qu.:6.623   3rd Qu.: 94.08   3rd Qu.: 5.188  
##  Max.   :0.8710   Max.   :8.780   Max.   :100.00   Max.   :12.127  
##       rad              tax           ptratio          black       
##  Min.   : 1.000   Min.   :187.0   Min.   :12.60   Min.   :  0.32  
##  1st Qu.: 4.000   1st Qu.:279.0   1st Qu.:17.40   1st Qu.:375.38  
##  Median : 5.000   Median :330.0   Median :19.05   Median :391.44  
##  Mean   : 9.549   Mean   :408.2   Mean   :18.46   Mean   :356.67  
##  3rd Qu.:24.000   3rd Qu.:666.0   3rd Qu.:20.20   3rd Qu.:396.23  
##  Max.   :24.000   Max.   :711.0   Max.   :22.00   Max.   :396.90  
##      lstat            medv           crime    
##  Min.   : 1.73   Min.   : 5.00   Min.   :0.0  
##  1st Qu.: 6.95   1st Qu.:17.02   1st Qu.:0.0  
##  Median :11.36   Median :21.20   Median :0.5  
##  Mean   :12.65   Mean   :22.53   Mean   :0.5  
##  3rd Qu.:16.95   3rd Qu.:25.00   3rd Qu.:1.0  
##  Max.   :37.97   Max.   :50.00   Max.   :1.0
set.seed(1)

traincrime<- sample(1:dim(Boston)[1], dim(Boston)[1]*.7, rep = FALSE)
testcrime <- -traincrime
Bostontrain <- Boston[traincrime,]
Bostontest <- Boston[testcrime,]
crimetest <- crime[testcrime]
pairs(Boston)

lgcrime <- glm(crime~indus + nox + age +rad + tax +lstat, data = Boston, family = binomial)
lgprobs <- predict(lgcrime, Bostontest, type = 'response')
predictlg <- rep(0, length(lgprobs))
predictlg[lgprobs>.5]<-1
table(predictlg, crimetest)
##          crimetest
## predictlg  0  1
##         0 65 14
##         1  8 65
mean(predictlg != crimetest)
## [1] 0.1447368

Our logistic regression has a 14.47% error rate.

ldacrime <- lda(crime~ indus + nox + age +rad + tax +lstat, data = Boston)
predictldacrime <- predict(ldacrime, Bostontest)
table(predictldacrime$class, crimetest)
##    crimetest
##      0  1
##   0 71 19
##   1  2 60
mean(predictldacrime$class != crimetest)
## [1] 0.1381579

Our lda has a 13.82% error rate, which is better than our logistic regression.

crimenbayes <- naiveBayes(crime~ indus + nox + age +rad + tax +lstat, data = Boston)
crimenbayesclass <- predict(crimenbayes, Bostontest)
table(crimenbayesclass, crimetest)
##                 crimetest
## crimenbayesclass  0  1
##                0 68 24
##                1  5 55
mean(crimenbayesclass != crimetest)
## [1] 0.1907895

Our naive Bayes has the highest error rate so far of 19.08%.

kbostontraining <- cbind(Boston$indus, Boston$nox, Boston$age, Boston$rad,Boston$tax ,Boston$lsta)[traincrime,]
kbostontesting <- cbind(Boston$indus, Boston$nox, Boston$age, Boston$rad, Boston$tax, Boston$lsta)[testcrime,]

kcrimetrain <- crime[traincrime]
kcrimetest <-crime[testcrime]

crimeknn1<- knn(kbostontraining, kbostontesting, kcrimetrain, k=1)
table(crimeknn1, kcrimetest)
##          kcrimetest
## crimeknn1  0  1
##         0 64  5
##         1  9 74
mean(crimeknn1 != kcrimetest)
## [1] 0.09210526
crimeknn3<- knn(kbostontraining, kbostontesting, kcrimetrain, k=3)
table(crimeknn3, kcrimetest)
##          kcrimetest
## crimeknn3  0  1
##         0 65  6
##         1  8 73
mean(crimeknn3 != kcrimetest)
## [1] 0.09210526
crimeknn5<- knn(kbostontraining, kbostontesting, kcrimetrain, k=5)
table(crimeknn5, kcrimetest)
##          kcrimetest
## crimeknn5  0  1
##         0 64  6
##         1  9 73
mean(crimeknn5 != kcrimetest)
## [1] 0.09868421

It looks like the best k is somewhere between 1 and 3, as it gives us the lowest error rate out of all our models at 9.21%. It looks like for this data set, using Knn classification will give us the best results.