Aplicar y simular algunas técnicas de conteo para determinar probabilidades.
Las técnicas de conteo son estrategias matemáticas usadas en probabilidad y estadística que permiten determinar el número total de casos o eventos o situaciones a partir de contabilizar cada uno de ellos dentro de un espacio muestral.
El espacio muestral se define con una literal matemática S
Contar cuántas ocasiones existe de un evento dentro de un espacio muestral.
Se tienen cuatro opciones a elegir en un espacio muestral identificada S, ¿Cual es el número de opciones?.
Imaginar que se tienen ciertas opciones ’A, B, C y D para desplazarse de un lugar a otro.
S <- c("A", 'B', 'C', 'D')
n.opciones <- length(S)
paste("El número total de opciones de S es cuatro.", n.opciones)
## [1] "El número total de opciones de S es cuatro. 4"
El principio aditivo significa contar las opciones.
¿En cuántas ocasiones existe A dentro de S?. Una ¿En cuántas ocasiones existe B dentro de S?. Una ¿En cuántas ocasiones existe C dentro de S?. Una.
Imaginar que se acude a una tienda de ropa se pueden elegir algún producto de entre varios de ellos; pantalones, camisas, playeras, zapatos.
Se identifica S nuevamente como espacio muestral que contiene todos los elementos de la muestra.
productos <- c('PANTALON', 'CAMISA', 'PLAYERA', 'ZAPATO')
productos
## [1] "PANTALON" "CAMISA" "PLAYERA" "ZAPATO"
n.productos <- length(productos)
paste("El número total de opciones de productos diferentes es: ", n.productos)
## [1] "El número total de opciones de productos diferentes es: 4"
Combina el principio aditivo con la operación de multiplicación.
Se trata de multiplicar las opciones de un tipo por las opciones de otro tipo y sumar los resultados de cada alternativa.
Se decide ir a una tienda de ropa, se puede adquirir, P Pantalones, C Camisas, P Playeras, Z Zapatos; existe por cada producto marcas de fabricantes específicas. De cada tipo de productos existen diferentes marcas X, Y y Z. De igual forma se puede elegir alguna talla de cualquier marca de algún tipo de productos.
La idea es determinar la cantidad de opciones que se tienen en total utilizando el principio multiplicativo.
¿Cuántas y cuáles opciones existen para elegir un sólo producto diferente?, Es el total de productos. Resp. cuatro opciones, un producto diferente de cada uno.
¿Cuántas opciones se tienen para elegir una marca de pantalón. Resp. tres
¿Cuántas opciones se tienen para elegir una marca de camisa. Resp. tres
¿Cuántas opciones se tienen para elegir una marca de playera. Resp. tres
¿Cuántas opciones se tienen para elegir una marca de zapato. Resp. tres
marcas <- c("X", "Y", "Z")
n.marcas <- length(marcas)
paste("Marcas diferentes a elegir son: ", n.marcas)
## [1] "Marcas diferentes a elegir son: 3"
paste("Alternativas de elegir producto y marca diferente son: ", n.productos * n.marcas)
## [1] "Alternativas de elegir producto y marca diferente son: 12"
Existe variedad en tallas de cada producto diferente, es decir, los pantalones, las camisas y las playeras tienen tallas diferentes, C Chica, M Mediana, G Grande, X Extra Grande:
De los pantalones existe talla C, M y G, son tres tallas
De las camisas existen tallas M y G, son dos tallas
De las playeras existen tallas C, M, G y X, son cuatro tallas
De los zapatos existen medidas 24, 25, 26, 27 y 28 en tallas centímetros., son cinco tallas o medidas.
tallas.PANTALON <- c("C", "M", "G")
tallas.CAMISAS <- c("M", "G")
tallas.PLAYERAS <- c("C", "M", "G", "X")
# Los zapatos tienen medidas particulares
tallas.ZAPATOS <- as.character(c(24:28))
tallas.PANTALON
## [1] "C" "M" "G"
tallas.CAMISAS
## [1] "M" "G"
tallas.PLAYERAS
## [1] "C" "M" "G" "X"
tallas.ZAPATOS
## [1] "24" "25" "26" "27" "28"
¿Cuántas opciones hay en total de elegir un producto distinto de marca diferente y de talla única?.
n.tallas.pantalones <- length(tallas.PANTALON)
n.tallas.camisas <- length(tallas.CAMISAS)
n.tallas.playeras <- length(tallas.PLAYERAS)
n.tallas.zapatos <- length(tallas.ZAPATOS)
n.opciones <- (n.marcas * n.tallas.pantalones) + (n.marcas * n.tallas.camisas) + (n.marcas * n.tallas.playeras) + (n.marcas * n.tallas.zapatos)
paste("Existen varias alternativas de elegir producto, marca y talla diferente, son: ", n.opciones)
## [1] "Existen varias alternativas de elegir producto, marca y talla diferente, son: 42"
\[ opciones = (n.marcas \times n.tallas.pantalones) + (n.marcas \times n.tallas.camisas) + \\ (n.marcas \times n.tallas.playeras) + (n.marcas \times n.tallas.zapatos) \]
\[ (3 \times 3) + (3 \times 2) + \\ (3 \times 4) + (3 \times 5) = 42 \]
Si se multiplica el número de opciones de marcas de cada producto por sus correspondientes tallas y sumando parcialmente cada resultado para determinar finalmente el total de opciones.
Se aplica un principio aditivo y multiplicativo para encontrar la cantidad de opciones y poder elegir un producto de entre todo el espacio muestral S.
¿Que sucede si de entre todos los productos hay alternativas de seleccionar para el género femenino y para el género masculino?
\[ opciones = (n.marcas \times n.tallas.pantalones \times n.generos) + (n.marcas \times n.tallas.camisas\times n.generos) + \\ (n.marcas \times n.tallas.playeras\times n.generos) + (n.marcas \times n.tallas.zapatos\times n.generos) \]
\[ (3 \times 3 \times 2) + (3 \times 2 \times 2) + \\ (3 \times 4 \times 2) + (3 \times 5 \times 2) = 84 \]
Se visualiza todo el espacio muestral S
La función source() permite cargar funciones y scripts, para este ejemplo se carga un script que contiene la construcción del espacio muestral.
La función nrow() devuelve la cantidad de registros u observaciones de un data.frame.
source("https://raw.githubusercontent.com/rpizarrog/Probabilidad-y-EstadIstica-VIRTUAL-DISTANCIA/main/scripts/ESPACIO%20MUESTRAL%20pantalones%20camisas%20playeras%20zapatos.r")
S
## productos marcas tallas generos
## 1 PANTALON X C Femenino
## 2 PANTALON Y C Femenino
## 3 PANTALON Z C Femenino
## 4 PANTALON X M Femenino
## 5 PANTALON Y M Femenino
## 6 PANTALON Z M Femenino
## 7 PANTALON X G Femenino
## 8 PANTALON Y G Femenino
## 9 PANTALON Z G Femenino
## 10 PANTALON X C Masculino
## 11 PANTALON Y C Masculino
## 12 PANTALON Z C Masculino
## 13 PANTALON X M Masculino
## 14 PANTALON Y M Masculino
## 15 PANTALON Z M Masculino
## 16 PANTALON X G Masculino
## 17 PANTALON Y G Masculino
## 18 PANTALON Z G Masculino
## 19 CAMISA X M Femenino
## 20 CAMISA Y M Femenino
## 21 CAMISA Z M Femenino
## 22 CAMISA X G Femenino
## 23 CAMISA Y G Femenino
## 24 CAMISA Z G Femenino
## 25 CAMISA X M Masculino
## 26 CAMISA Y M Masculino
## 27 CAMISA Z M Masculino
## 28 CAMISA X G Masculino
## 29 CAMISA Y G Masculino
## 30 CAMISA Z G Masculino
## 31 PLAYERA X C Femenino
## 32 PLAYERA Y C Femenino
## 33 PLAYERA Z C Femenino
## 34 PLAYERA X M Femenino
## 35 PLAYERA Y M Femenino
## 36 PLAYERA Z M Femenino
## 37 PLAYERA X G Femenino
## 38 PLAYERA Y G Femenino
## 39 PLAYERA Z G Femenino
## 40 PLAYERA X X Femenino
## 41 PLAYERA Y X Femenino
## 42 PLAYERA Z X Femenino
## 43 PLAYERA X C Masculino
## 44 PLAYERA Y C Masculino
## 45 PLAYERA Z C Masculino
## 46 PLAYERA X M Masculino
## 47 PLAYERA Y M Masculino
## 48 PLAYERA Z M Masculino
## 49 PLAYERA X G Masculino
## 50 PLAYERA Y G Masculino
## 51 PLAYERA Z G Masculino
## 52 PLAYERA X X Masculino
## 53 PLAYERA Y X Masculino
## 54 PLAYERA Z X Masculino
## 55 ZAPATO X 24 Femenino
## 56 ZAPATO Y 24 Femenino
## 57 ZAPATO Z 24 Femenino
## 58 ZAPATO X 25 Femenino
## 59 ZAPATO Y 25 Femenino
## 60 ZAPATO Z 25 Femenino
## 61 ZAPATO X 26 Femenino
## 62 ZAPATO Y 26 Femenino
## 63 ZAPATO Z 26 Femenino
## 64 ZAPATO X 27 Femenino
## 65 ZAPATO Y 27 Femenino
## 66 ZAPATO Z 27 Femenino
## 67 ZAPATO X 28 Femenino
## 68 ZAPATO Y 28 Femenino
## 69 ZAPATO Z 28 Femenino
## 70 ZAPATO X 24 Masculino
## 71 ZAPATO Y 24 Masculino
## 72 ZAPATO Z 24 Masculino
## 73 ZAPATO X 25 Masculino
## 74 ZAPATO Y 25 Masculino
## 75 ZAPATO Z 25 Masculino
## 76 ZAPATO X 26 Masculino
## 77 ZAPATO Y 26 Masculino
## 78 ZAPATO Z 26 Masculino
## 79 ZAPATO X 27 Masculino
## 80 ZAPATO Y 27 Masculino
## 81 ZAPATO Z 27 Masculino
## 82 ZAPATO X 28 Masculino
## 83 ZAPATO Y 28 Masculino
## 84 ZAPATO Z 28 Masculino
N <- nrow(S) # nrow determina la cantidad de observaciones
En caso de que hubiese sólo un artículo de cada tipo de producto de cada marca de cada talla.
producto <- "PANTALON"
productos <- subset(S, productos == producto)
productos
## productos marcas tallas generos
## 1 PANTALON X C Femenino
## 2 PANTALON Y C Femenino
## 3 PANTALON Z C Femenino
## 4 PANTALON X M Femenino
## 5 PANTALON Y M Femenino
## 6 PANTALON Z M Femenino
## 7 PANTALON X G Femenino
## 8 PANTALON Y G Femenino
## 9 PANTALON Z G Femenino
## 10 PANTALON X C Masculino
## 11 PANTALON Y C Masculino
## 12 PANTALON Z C Masculino
## 13 PANTALON X M Masculino
## 14 PANTALON Y M Masculino
## 15 PANTALON Z M Masculino
## 16 PANTALON X G Masculino
## 17 PANTALON Y G Masculino
## 18 PANTALON Z G Masculino
n.productos <- nrow(productos)
paste("Existen ", n.productos, " opciones de elegir un(a) ", producto, " de entre todo el espacio muestral", ", representan ", round(n.productos / N,4), " o sea ", round(n.productos / N * 100, 2), "% del total del espacio muestral")
## [1] "Existen 18 opciones de elegir un(a) PANTALON de entre todo el espacio muestral , representan 0.2143 o sea 21.43 % del total del espacio muestral"
producto <- "CAMISA"
productos <- subset(S, productos == producto)
productos
## productos marcas tallas generos
## 19 CAMISA X M Femenino
## 20 CAMISA Y M Femenino
## 21 CAMISA Z M Femenino
## 22 CAMISA X G Femenino
## 23 CAMISA Y G Femenino
## 24 CAMISA Z G Femenino
## 25 CAMISA X M Masculino
## 26 CAMISA Y M Masculino
## 27 CAMISA Z M Masculino
## 28 CAMISA X G Masculino
## 29 CAMISA Y G Masculino
## 30 CAMISA Z G Masculino
n.productos <- nrow(productos)
paste("Existen ", n.productos, " opciones de elegir un(a) ", producto, " de entre todo el espacio muestral", ", representan ", round(n.productos / N,4), " o sea ", round(n.productos / N * 100, 2), "% del total del espacio muestral")
## [1] "Existen 12 opciones de elegir un(a) CAMISA de entre todo el espacio muestral , representan 0.1429 o sea 14.29 % del total del espacio muestral"
producto <- "PLAYERA"
productos <- subset(S, productos == producto)
productos
## productos marcas tallas generos
## 31 PLAYERA X C Femenino
## 32 PLAYERA Y C Femenino
## 33 PLAYERA Z C Femenino
## 34 PLAYERA X M Femenino
## 35 PLAYERA Y M Femenino
## 36 PLAYERA Z M Femenino
## 37 PLAYERA X G Femenino
## 38 PLAYERA Y G Femenino
## 39 PLAYERA Z G Femenino
## 40 PLAYERA X X Femenino
## 41 PLAYERA Y X Femenino
## 42 PLAYERA Z X Femenino
## 43 PLAYERA X C Masculino
## 44 PLAYERA Y C Masculino
## 45 PLAYERA Z C Masculino
## 46 PLAYERA X M Masculino
## 47 PLAYERA Y M Masculino
## 48 PLAYERA Z M Masculino
## 49 PLAYERA X G Masculino
## 50 PLAYERA Y G Masculino
## 51 PLAYERA Z G Masculino
## 52 PLAYERA X X Masculino
## 53 PLAYERA Y X Masculino
## 54 PLAYERA Z X Masculino
n.productos <- nrow(productos)
paste("Existen ", n.productos, " opciones de elegir un(a) ", producto, " de entre todo el espacio muestral", ", representan ", round(n.productos / N,4), " o sea ", round(n.productos / N * 100, 2), "% del total del espacio muestral")
## [1] "Existen 24 opciones de elegir un(a) PLAYERA de entre todo el espacio muestral , representan 0.2857 o sea 28.57 % del total del espacio muestral"
producto <- "ZAPATO"
productos <- subset(S, productos == producto)
productos
## productos marcas tallas generos
## 55 ZAPATO X 24 Femenino
## 56 ZAPATO Y 24 Femenino
## 57 ZAPATO Z 24 Femenino
## 58 ZAPATO X 25 Femenino
## 59 ZAPATO Y 25 Femenino
## 60 ZAPATO Z 25 Femenino
## 61 ZAPATO X 26 Femenino
## 62 ZAPATO Y 26 Femenino
## 63 ZAPATO Z 26 Femenino
## 64 ZAPATO X 27 Femenino
## 65 ZAPATO Y 27 Femenino
## 66 ZAPATO Z 27 Femenino
## 67 ZAPATO X 28 Femenino
## 68 ZAPATO Y 28 Femenino
## 69 ZAPATO Z 28 Femenino
## 70 ZAPATO X 24 Masculino
## 71 ZAPATO Y 24 Masculino
## 72 ZAPATO Z 24 Masculino
## 73 ZAPATO X 25 Masculino
## 74 ZAPATO Y 25 Masculino
## 75 ZAPATO Z 25 Masculino
## 76 ZAPATO X 26 Masculino
## 77 ZAPATO Y 26 Masculino
## 78 ZAPATO Z 26 Masculino
## 79 ZAPATO X 27 Masculino
## 80 ZAPATO Y 27 Masculino
## 81 ZAPATO Z 27 Masculino
## 82 ZAPATO X 28 Masculino
## 83 ZAPATO Y 28 Masculino
## 84 ZAPATO Z 28 Masculino
n.productos <- nrow(productos)
paste("Existen ", n.productos, " opciones de elegir un(a) ", producto, " de entre todo el espacio muestral", ", representan ", round(n.productos / N,4), " o sea ", round(n.productos / N * 100, 2), "% del total del espacio muestral")
## [1] "Existen 30 opciones de elegir un(a) ZAPATO de entre todo el espacio muestral , representan 0.3571 o sea 35.71 % del total del espacio muestral"
Es una representación gráfica que permite representar probabilidades de un espacio muestral.
La suma de las frecuencias debe ser el total de los productos.
La suma de las frecuencias relativas o probabilidades relativas debe ser 1.
La suma de las probabilidades en valores % debe ser 100%.
Son ideas personales de los participantes, alumnos sobre lo que se desarrolla, a que conclusiones llegan.
De las preguntas 1 a 3, conteste descriptiva y narrativa, de las preguntas 4 en adelante realice el cálculo de probabilidades y muestre los resultados como lo indica la pregunta 4.
¿Para que sirven técnicas de conteo aditivas y multiplicativas?
Para contar el número de posibles resultados o combinaciones que pueden ocurrir en un evento o experimento.
¿Que representa un diagrama de árbol en términos de probabilidad?
Es una representación gráfica que se utiliza en probabilidad para visualizar los posibles resultados y las probabilidades asociadas a un experimento o evento aleatorio, cada rama del árbol representa una opción o resultado posible del evento o experimento.
¿Cómo determinar probabilidades?
Para determinar probabilidades, primero debe identificar el evento o resultado que desea analizar. Luego, debe determinar cuántos resultados posibles existen para ese evento y cuántos de esos resultados posibles corresponden al evento que le interesa.
La probabilidad se define como el número de resultados favorables dividido por el número total de resultados posibles.
¿Cuántas y cuáles ocasiones existen para elegir un producto que sea pantalón y del género Femenino?, ¿cuál es su probabilidad?
producto <- "PANTALON"
genero <- "Femenino"
productos <- subset(S, productos == producto & generos == genero)
productos
## productos marcas tallas generos
## 1 PANTALON X C Femenino
## 2 PANTALON Y C Femenino
## 3 PANTALON Z C Femenino
## 4 PANTALON X M Femenino
## 5 PANTALON Y M Femenino
## 6 PANTALON Z M Femenino
## 7 PANTALON X G Femenino
## 8 PANTALON Y G Femenino
## 9 PANTALON Z G Femenino
n.productos <- nrow(productos)
paste("Existen ", n.productos, " opciones de elegir un(a) ", producto, " ", genero, " de entre todo el espacio muestral", ", representan ", round(n.productos / N,4), " o sea ", round(n.productos / N * 100, 2), "% del total del espacio muestral")
## [1] "Existen 9 opciones de elegir un(a) PANTALON Femenino de entre todo el espacio muestral , representan 0.1071 o sea 10.71 % del total del espacio muestral"
¿Cuál es la probabilida de elegir una playera del género Masculino de talla G?
producto <- "PLAYERA"
genero <- "Masculino"
talla <- "G"
productos <- subset(S, productos == producto & generos == genero & tallas == talla)
productos
## productos marcas tallas generos
## 49 PLAYERA X G Masculino
## 50 PLAYERA Y G Masculino
## 51 PLAYERA Z G Masculino
n.productos <- nrow(productos)
paste("Existen ", n.productos, " opciones de elegir un(a) ", producto, " ", genero, " de entre todo el espacio muestral", ", representan ", round(n.productos / N,4), " o sea ", round(n.productos / N * 100, 2), "% del total del espacio muestral")
## [1] "Existen 3 opciones de elegir un(a) PLAYERA Masculino de entre todo el espacio muestral , representan 0.0357 o sea 3.57 % del total del espacio muestral"
producto <- "CAMISA"
genero <- "Femenino"
talla <- "CH"
productos <- subset(S, productos == producto & generos == genero & tallas == talla)
productos
## [1] productos marcas tallas generos
## <0 rows> (or 0-length row.names)
n.productos <- nrow(productos)
paste("Existen ", n.productos, " opciones de elegir un(a) ", producto, " ", genero, " de entre todo el espacio muestral", ", representan ", round(n.productos / N,4), " o sea ", round(n.productos / N * 100, 2), "% del total del espacio muestral")
## [1] "Existen 0 opciones de elegir un(a) CAMISA Femenino de entre todo el espacio muestral , representan 0 o sea 0 % del total del espacio muestral"
producto <- "ZAPATO"
talla <- "22"
productos <- subset(S, productos == producto & tallas == talla)
productos
## [1] productos marcas tallas generos
## <0 rows> (or 0-length row.names)
n.productos <- nrow(productos)
paste("Existen ", n.productos, " opciones de elegir un(a) ", producto, " ", "de entre todo el espacio muestral", ", representan ", round(n.productos / N,4), " o sea ", round(n.productos / N * 100, 2), "% del total del espacio muestral")
## [1] "Existen 0 opciones de elegir un(a) ZAPATO de entre todo el espacio muestral , representan 0 o sea 0 % del total del espacio muestral"