Load Libraries and attach datasets

library(ISLR2)
library(GGally)
library(MASS)
library(class)
library(e1071)
library(tidyverse)
library(corrplot)
attach(Weekly)
attach(Auto)
attach(Boston)

Problem 13.

This question should be answered using the Weekly data set, which is part of the ISLR2 package. This data is similar in nature to the Smarket data from this chapter’s lab, except that it contains 1, 089 weekly returns for 21 years, from the beginning of 1990 to the end of 2010.


(a) Produce some numerical and graphical summaries of the Weekly data. Do there appear to be any patterns?


Looking at the below plots, the only relevant correlation appears to be between Volume and Year. It is worth noting that there is a correlation between Today and Direction (as shown in the colors in the last plot); however, this is a pattern you would expect to see based on the fact that Direction is a representation (up or down) of the value in Today.


summary(Weekly)
##       Year           Lag1               Lag2               Lag3         
##  Min.   :1990   Min.   :-18.1950   Min.   :-18.1950   Min.   :-18.1950  
##  1st Qu.:1995   1st Qu.: -1.1540   1st Qu.: -1.1540   1st Qu.: -1.1580  
##  Median :2000   Median :  0.2410   Median :  0.2410   Median :  0.2410  
##  Mean   :2000   Mean   :  0.1506   Mean   :  0.1511   Mean   :  0.1472  
##  3rd Qu.:2005   3rd Qu.:  1.4050   3rd Qu.:  1.4090   3rd Qu.:  1.4090  
##  Max.   :2010   Max.   : 12.0260   Max.   : 12.0260   Max.   : 12.0260  
##       Lag4               Lag5              Volume            Today         
##  Min.   :-18.1950   Min.   :-18.1950   Min.   :0.08747   Min.   :-18.1950  
##  1st Qu.: -1.1580   1st Qu.: -1.1660   1st Qu.:0.33202   1st Qu.: -1.1540  
##  Median :  0.2380   Median :  0.2340   Median :1.00268   Median :  0.2410  
##  Mean   :  0.1458   Mean   :  0.1399   Mean   :1.57462   Mean   :  0.1499  
##  3rd Qu.:  1.4090   3rd Qu.:  1.4050   3rd Qu.:2.05373   3rd Qu.:  1.4050  
##  Max.   : 12.0260   Max.   : 12.0260   Max.   :9.32821   Max.   : 12.0260  
##  Direction 
##  Down:484  
##  Up  :605  
##            
##            
##            
## 


#Draw a correlation of Weekly, with Direction removed (since it is not numerical).
corrplot(cor(Weekly[,-9]), method = 'number', type = 'lower')


#Plotting the data using direction as a color to look for patterns/correlation.
plot(Weekly[,-9],col=Weekly$Direction)


(b) Use the full data set to perform a logistic regression with Direction as the response and the five lag variables plus Volume as predictors. Use the summary function to print the results. Do any of the predictors appear to be statistically significant? If so, which ones?


Looking at the summary below, the only predictor that is significant (using an alpha of .05) is Lag2 based off the p-value of .0296. The next closest predictor is Lag1, which is .11.


weekly_lrm <- glm(Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + Volume,
                  data = Weekly, 
                  family = 'binomial')

summary(weekly_lrm)
## 
## Call:
## glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + 
##     Volume, family = "binomial", data = Weekly)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6949  -1.2565   0.9913   1.0849   1.4579  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  0.26686    0.08593   3.106   0.0019 **
## Lag1        -0.04127    0.02641  -1.563   0.1181   
## Lag2         0.05844    0.02686   2.175   0.0296 * 
## Lag3        -0.01606    0.02666  -0.602   0.5469   
## Lag4        -0.02779    0.02646  -1.050   0.2937   
## Lag5        -0.01447    0.02638  -0.549   0.5833   
## Volume      -0.02274    0.03690  -0.616   0.5377   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1496.2  on 1088  degrees of freedom
## Residual deviance: 1486.4  on 1082  degrees of freedom
## AIC: 1500.4
## 
## Number of Fisher Scoring iterations: 4


(c) Compute the confusion matrix and overall fraction of correct predictions. Explain what the confusion matrix is telling you about the types of mistakes made by logistic regression.


The table below indicates we predicted “Up” correctly 557 times and “Down” correctly 54 times. That results in a total of 611 correct predictions out of 1089 attempts. This equates to an accuracy rate of 56%. This is not very accurate, overall. At first glimpse, the model appears to predict “Up” fairly well with a 92% accuracy rate (557 correct, 48 wrong); however, this is due to the large amount of “Up” predictions in the model. In fact in this particular data set, if you just assumed “Up” for all observations, you would have an overall prediction rate of 55.5% (slightly less than our model) and you would predict “Up” correctly 100% of the time. With that in mind, I would say the model is not very effective.


weekly_probs <- predict(weekly_lrm, type='response')
weekly_preds <- rep('Down', length(weekly_probs))
weekly_preds[weekly_probs > 0.5] = 'Up'
table(weekly_preds, Weekly$Direction)
##             
## weekly_preds Down  Up
##         Down   54  48
##         Up    430 557


mean(weekly_preds == Weekly$Direction)
## [1] 0.5610652


(d) Now fit the logistic regression model using a training data period from 1990 to 2008, with Lag2 as the only predictor. Compute the confusion matrix and the overall fraction of correct predictions for the held out data (that is, the data from 2009 and 2010).


weekly_train <- (Weekly$Year<2009)
weekly_test <- Weekly[!weekly_train,]
weekly_glm <-glm(Direction ~ Lag2, data = Weekly, family = 'binomial',  
                 subset = weekly_train)
glm_probs <- predict(weekly_glm, weekly_test, type = 'response')
glm_preds <- rep('Down', length(glm_probs))
glm_preds[glm_probs > 0.5] = 'Up'
direction_test = Weekly$Direction[!weekly_train]
table(glm_preds, direction_test)
##          direction_test
## glm_preds Down Up
##      Down    9  5
##      Up     34 56


mean(glm_preds == direction_test)
## [1] 0.625


(e) Repeat (d) using LDA.


weekly_lda <- lda(Direction ~ Lag2, data = Weekly, family = 'binomial',
                  subset = weekly_train)
lda_preds <- predict(weekly_lda, weekly_test)
table(lda_preds$class, direction_test)
##       direction_test
##        Down Up
##   Down    9  5
##   Up     34 56


mean(lda_preds$class == direction_test)
## [1] 0.625


(f) Repeat (d) using QDA.


weekly_qda <- qda(Direction ~ Lag2, data = Weekly, family = 'binomial',
                  subset = weekly_train)
qda_preds <- predict(weekly_qda, weekly_test)
table(qda_preds$class, direction_test)
##       direction_test
##        Down Up
##   Down    0  0
##   Up     43 61


mean(qda_preds$class == direction_test)
## [1] 0.5865385


(g) Repeat (d) using KNN with K = 1.


weekly_train2 <- as.matrix(Weekly$Lag2[weekly_train])
weekly_test <- as.matrix(Weekly$Lag2[!weekly_train])
direction_train <- Weekly$Direction[weekly_train]
set.seed(22)
knn_preds <- knn(weekly_train2, weekly_test, direction_train, k = 1)
table(knn_preds,direction_test)
##          direction_test
## knn_preds Down Up
##      Down   21 29
##      Up     22 32


mean(knn_preds == direction_test)
## [1] 0.5


(h) Repeat (d) using naive Bayes.


weekly_NB <- naiveBayes(Direction ~ Lag2, data = Weekly, subset = weekly_train)
NB_preds <- predict(weekly_NB, weekly_test)
table(NB_preds, direction_test)
##         direction_test
## NB_preds Down Up
##     Down    0  0
##     Up     43 61


mean(NB_preds == direction_test)
## [1] 0.5865385


(i) Which of these methods appears to provide the best results on this data?


From an overall perspective, both the LR and the LDA have an accuracy rate of 62.5%. However, much like the model in problem 13c, the best results are dependent on whether or not you would prefer an overall accuracy rate or a more favorable rate of predicting “Up” or “Down”. For instance, in the LDA and LR models both only achieved about a 20% accuracy rating when predicting “Down”. If you were more concerned about accurately predicting “Down” you might choose to use the KNN model which predicts down correctly about 50% of the time.


(j) Experiment with different combinations of predictors, including possible transformations and interactions, for each of the methods. Report the variables, method, and associated confusion matrix that appears to provide the best results on the held out data. Note that you should also experiment with values for K in the KNN classifier.


Adding Lag1 and Year with an interaction actually made the model’s overall accuracy worse. Dropping the accuracy in which it predicted “Down” while not affecting the “Up” prediction accuracy. On a positive note, increasing the K from 1 to 3 positively impacted the model. In exchange for a slight decrease in accuracy in predicting “Down” (from 50% to 46.5%), there was a significant increase in predicting “Up”, from 50% to 72%. Depending on the priority placed predicting either “Up” or “Down” more accurately, this is likely a significant improvement to the model


weekly_train <- (Weekly$Year<2009)
weekly_test <- Weekly[!weekly_train,]
weekly_glm <-glm(Direction ~ Lag1:Lag2+Year, data = Weekly, family = 'binomial',  
                 subset = weekly_train)
glm_probs <- predict(weekly_glm, weekly_test, type = 'response')
glm_preds <- rep('Down', length(glm_probs))
glm_preds[glm_probs > 0.5] = 'Up'
direction_test = Weekly$Direction[!weekly_train]
table(glm_preds, direction_test)
##          direction_test
## glm_preds Down Up
##      Down    6  5
##      Up     37 56


mean(glm_preds == direction_test)
## [1] 0.5865385


weekly_train2 <- as.matrix(Weekly$Lag2[weekly_train])
weekly_test <- as.matrix(Weekly$Lag2[!weekly_train])
direction_train <- Weekly$Direction[weekly_train]
set.seed(22)
knn_preds2 <- knn(weekly_train2, weekly_test, direction_train, k = 4)
table(knn_preds2, direction_test)
##           direction_test
## knn_preds2 Down Up
##       Down   19 20
##       Up     24 41


mean(knn_preds2 == direction_test)
## [1] 0.6153846







Problem 14.

In this problem, you will develop a model to predict whether a given car gets high or low gas mileage based on the Auto data set.

(a) Create a binary variable, mpg01, that contains a 1 if mpg contains a value above its median, and a 0 if mpg contains a value below its median. You can compute the median using the median() function. Note you may find it helpful to use the data.frame() function to create a single data set containing both mpg01 and the other Auto variables.


mpg01 <- rep(0, length(Auto$mpg))
mpg01[Auto$mpg > median(Auto$mpg)] <- 1
Auto <- data.frame(Auto, mpg01)

summary(Auto)
##       mpg          cylinders      displacement     horsepower        weight    
##  Min.   : 9.00   Min.   :3.000   Min.   : 68.0   Min.   : 46.0   Min.   :1613  
##  1st Qu.:17.00   1st Qu.:4.000   1st Qu.:105.0   1st Qu.: 75.0   1st Qu.:2225  
##  Median :22.75   Median :4.000   Median :151.0   Median : 93.5   Median :2804  
##  Mean   :23.45   Mean   :5.472   Mean   :194.4   Mean   :104.5   Mean   :2978  
##  3rd Qu.:29.00   3rd Qu.:8.000   3rd Qu.:275.8   3rd Qu.:126.0   3rd Qu.:3615  
##  Max.   :46.60   Max.   :8.000   Max.   :455.0   Max.   :230.0   Max.   :5140  
##                                                                                
##   acceleration        year           origin                      name    
##  Min.   : 8.00   Min.   :70.00   Min.   :1.000   amc matador       :  5  
##  1st Qu.:13.78   1st Qu.:73.00   1st Qu.:1.000   ford pinto        :  5  
##  Median :15.50   Median :76.00   Median :1.000   toyota corolla    :  5  
##  Mean   :15.54   Mean   :75.98   Mean   :1.577   amc gremlin       :  4  
##  3rd Qu.:17.02   3rd Qu.:79.00   3rd Qu.:2.000   amc hornet        :  4  
##  Max.   :24.80   Max.   :82.00   Max.   :3.000   chevrolet chevette:  4  
##                                                  (Other)           :365  
##      mpg01    
##  Min.   :0.0  
##  1st Qu.:0.0  
##  Median :0.5  
##  Mean   :0.5  
##  3rd Qu.:1.0  
##  Max.   :1.0  
## 


(b) Explore the data graphically in order to investigate the association between mpg01 and the other features. Which of the other features seem most likely to be useful in predicting mpg01? Scatterplots and boxplots may be useful tools to answer this question. Describe your findings.


The below charts indicate that cylinders, displacement, horsepower, and weight all appear to have a significant correlation to mpg01 and might be useful as predictors.


#Draw a correlation of Auto with name removed (since it is not numerical).
corrplot(cor(Auto[-9]), method = 'number', type = 'lower')


#Plotting the data using to look for patterns/correlation.
plot(Auto[-c(9,10)], col=as.factor(Auto$mpg01))


(c) Split the data into a training set and a test set.


set.seed(22)
train_num <- sample(nrow(Auto), size = (nrow(Auto) * .75))
test_num <- -train_num
auto_train <- Auto[train_num, ]
auto_test <- Auto[test_num, ]
mpg01_test <- Auto$mpg01[test_num]


(d) Perform LDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?


auto_lda <- lda(mpg01 ~ cylinders + displacement + horsepower + weight, 
                data = auto_train)
lda_preds <- predict(auto_lda, auto_test)
table(lda_preds$class, mpg01_test)
##    mpg01_test
##      0  1
##   0 49  2
##   1  6 41


mean(lda_preds$class == mpg01_test)
## [1] 0.9183673
1 - mean(lda_preds$class == mpg01_test)
## [1] 0.08163265


(e) Perform QDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?


The QDA test error rate is 7.1%, slightly better than the LDA model’s test error rate of 8.2%.


auto_qda <- qda(mpg01 ~ cylinders + displacement + horsepower + weight, 
                data = auto_train)
qda_preds <- predict(auto_qda, auto_test)
table(qda_preds$class, mpg01_test)
##    mpg01_test
##      0  1
##   0 52  4
##   1  3 39


mean(qda_preds$class == mpg01_test)
## [1] 0.9285714
1-mean(qda_preds$class == mpg01_test)
## [1] 0.07142857


(f) Perform logistic regression on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?


The LR test error rate is 8.2%, identical to the LDA error rate.


auto_glm <- glm(mpg01 ~ cylinders + displacement + horsepower + weight, 
                data = auto_train)
glm_probs <- predict(auto_glm, auto_test, type = 'response')
glm_preds <- round(glm_probs)
table(glm_preds, mpg01_test)
##          mpg01_test
## glm_preds  0  1
##         0 49  2
##         1  6 41


mean(glm_preds == mpg01_test)
## [1] 0.9183673
1-mean(glm_preds == mpg01_test)
## [1] 0.08163265


(g) Perform naive Bayes on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

The NB test error rate is 8.2%, identical to the LDA error rate.

auto_NB <- naiveBayes(mpg01 ~ cylinders + displacement + horsepower + weight, 
                data = auto_train)
NB_preds <- predict(auto_NB, auto_test)
table(NB_preds, mpg01_test)
##         mpg01_test
## NB_preds  0  1
##        0 52  3
##        1  3 40


mean(NB_preds == mpg01_test)
## [1] 0.9387755
1-mean(glm_preds == mpg01_test)
## [1] 0.08163265


(h) Perform KNN on the training data, with several values of K, in order to predict mpg01. Use only the variables that seemed most associated with mpg01 in (b). What test errors do you obtain? Which value of K seems to perform the best on this data set?

I used both the square root method and a k iteration loop to determine the best value of K. Looking at the results below, it appears that the K value of 8 appears to perform the best on this data set.


#Determine optimal K using square root method.
round(sqrt(98))
## [1] 10


#Running a KNN with a k value of 10
auto_train2 <- cbind(Auto$cylinders, Auto$displacement, Auto$horsepower,
                     Auto$weight)[train_num,]
auto_test2 <- cbind(Auto$cylinders, Auto$displacement, Auto$horsepower,
                     Auto$weight)[test_num,]
mpg01_train <- Auto$mpg01[train_num]
set.seed(22)
knn_preds2 <- knn(auto_train2, auto_test2, mpg01_train, k = 10)
table(knn_preds2, mpg01_test)
##           mpg01_test
## knn_preds2  0  1
##          0 50  4
##          1  5 39


mean(knn_preds2 == mpg01_test)
## [1] 0.877551
1-mean(knn_preds2 == mpg01_test)
## [1] 0.122449


#Using a for loop to determine the optimal k value.

acc <- list()
for (i in 1:20) {
    knn_preds2 <- knn(auto_train2, auto_test2, mpg01_train, k = i)
    acc[as.character(i)] = 1-mean(knn_preds2 == mpg01_test)
}

acc <- unlist(acc)
#Displaying the error rate for each iteration of k value.  The lowest error rate is found with a k value of 8, which results in an 8.1% error rate.
acc
##          1          2          3          4          5          6          7 
## 0.10204082 0.14285714 0.11224490 0.10204082 0.11224490 0.09183673 0.09183673 
##          8          9         10         11         12         13         14 
## 0.08163265 0.09183673 0.08163265 0.10204082 0.09183673 0.10204082 0.09183673 
##         15         16         17         18         19         20 
## 0.10204082 0.10204082 0.10204082 0.10204082 0.10204082 0.11224490







Problem 16.

Using the Boston data set, fit classification models in order to predict whether a given census tract has a crime rate above or below the median. Explore logistic regression, LDA, naive Bayes, and KNN models using various subsets of the predictors. Describe your findings.


Hint: You will have to create the response variable yourself, using the variables that are contained in the Boston data set.


#Creating a response variable where 1 equals a crime rate above the median and 0 equals a rate below the median.

crim01 <- rep(0, length(Boston$crim))
crim01[Boston$crim > median(Boston$crim)] <- 1
Boston <- data.frame(Boston, crim01)

summary(Boston)
##       crim                zn             indus            chas        
##  Min.   : 0.00632   Min.   :  0.00   Min.   : 0.46   Min.   :0.00000  
##  1st Qu.: 0.08205   1st Qu.:  0.00   1st Qu.: 5.19   1st Qu.:0.00000  
##  Median : 0.25651   Median :  0.00   Median : 9.69   Median :0.00000  
##  Mean   : 3.61352   Mean   : 11.36   Mean   :11.14   Mean   :0.06917  
##  3rd Qu.: 3.67708   3rd Qu.: 12.50   3rd Qu.:18.10   3rd Qu.:0.00000  
##  Max.   :88.97620   Max.   :100.00   Max.   :27.74   Max.   :1.00000  
##       nox               rm             age              dis        
##  Min.   :0.3850   Min.   :3.561   Min.   :  2.90   Min.   : 1.130  
##  1st Qu.:0.4490   1st Qu.:5.886   1st Qu.: 45.02   1st Qu.: 2.100  
##  Median :0.5380   Median :6.208   Median : 77.50   Median : 3.207  
##  Mean   :0.5547   Mean   :6.285   Mean   : 68.57   Mean   : 3.795  
##  3rd Qu.:0.6240   3rd Qu.:6.623   3rd Qu.: 94.08   3rd Qu.: 5.188  
##  Max.   :0.8710   Max.   :8.780   Max.   :100.00   Max.   :12.127  
##       rad              tax           ptratio          black       
##  Min.   : 1.000   Min.   :187.0   Min.   :12.60   Min.   :  0.32  
##  1st Qu.: 4.000   1st Qu.:279.0   1st Qu.:17.40   1st Qu.:375.38  
##  Median : 5.000   Median :330.0   Median :19.05   Median :391.44  
##  Mean   : 9.549   Mean   :408.2   Mean   :18.46   Mean   :356.67  
##  3rd Qu.:24.000   3rd Qu.:666.0   3rd Qu.:20.20   3rd Qu.:396.23  
##  Max.   :24.000   Max.   :711.0   Max.   :22.00   Max.   :396.90  
##      lstat            medv           crim01   
##  Min.   : 1.73   Min.   : 5.00   Min.   :0.0  
##  1st Qu.: 6.95   1st Qu.:17.02   1st Qu.:0.0  
##  Median :11.36   Median :21.20   Median :0.5  
##  Mean   :12.65   Mean   :22.53   Mean   :0.5  
##  3rd Qu.:16.95   3rd Qu.:25.00   3rd Qu.:1.0  
##  Max.   :37.97   Max.   :50.00   Max.   :1.0


#Exploring data to find correlating variables
cor(Boston)
##                crim          zn       indus         chas         nox
## crim     1.00000000 -0.20046922  0.40658341 -0.055891582  0.42097171
## zn      -0.20046922  1.00000000 -0.53382819 -0.042696719 -0.51660371
## indus    0.40658341 -0.53382819  1.00000000  0.062938027  0.76365145
## chas    -0.05589158 -0.04269672  0.06293803  1.000000000  0.09120281
## nox      0.42097171 -0.51660371  0.76365145  0.091202807  1.00000000
## rm      -0.21924670  0.31199059 -0.39167585  0.091251225 -0.30218819
## age      0.35273425 -0.56953734  0.64477851  0.086517774  0.73147010
## dis     -0.37967009  0.66440822 -0.70802699 -0.099175780 -0.76923011
## rad      0.62550515 -0.31194783  0.59512927 -0.007368241  0.61144056
## tax      0.58276431 -0.31456332  0.72076018 -0.035586518  0.66802320
## ptratio  0.28994558 -0.39167855  0.38324756 -0.121515174  0.18893268
## black   -0.38506394  0.17552032 -0.35697654  0.048788485 -0.38005064
## lstat    0.45562148 -0.41299457  0.60379972 -0.053929298  0.59087892
## medv    -0.38830461  0.36044534 -0.48372516  0.175260177 -0.42732077
## crim01   0.40939545 -0.43615103  0.60326017  0.070096774  0.72323480
##                  rm         age         dis          rad         tax    ptratio
## crim    -0.21924670  0.35273425 -0.37967009  0.625505145  0.58276431  0.2899456
## zn       0.31199059 -0.56953734  0.66440822 -0.311947826 -0.31456332 -0.3916785
## indus   -0.39167585  0.64477851 -0.70802699  0.595129275  0.72076018  0.3832476
## chas     0.09125123  0.08651777 -0.09917578 -0.007368241 -0.03558652 -0.1215152
## nox     -0.30218819  0.73147010 -0.76923011  0.611440563  0.66802320  0.1889327
## rm       1.00000000 -0.24026493  0.20524621 -0.209846668 -0.29204783 -0.3555015
## age     -0.24026493  1.00000000 -0.74788054  0.456022452  0.50645559  0.2615150
## dis      0.20524621 -0.74788054  1.00000000 -0.494587930 -0.53443158 -0.2324705
## rad     -0.20984667  0.45602245 -0.49458793  1.000000000  0.91022819  0.4647412
## tax     -0.29204783  0.50645559 -0.53443158  0.910228189  1.00000000  0.4608530
## ptratio -0.35550149  0.26151501 -0.23247054  0.464741179  0.46085304  1.0000000
## black    0.12806864 -0.27353398  0.29151167 -0.444412816 -0.44180801 -0.1773833
## lstat   -0.61380827  0.60233853 -0.49699583  0.488676335  0.54399341  0.3740443
## medv     0.69535995 -0.37695457  0.24992873 -0.381626231 -0.46853593 -0.5077867
## crim01  -0.15637178  0.61393992 -0.61634164  0.619786249  0.60874128  0.2535684
##               black      lstat       medv      crim01
## crim    -0.38506394  0.4556215 -0.3883046  0.40939545
## zn       0.17552032 -0.4129946  0.3604453 -0.43615103
## indus   -0.35697654  0.6037997 -0.4837252  0.60326017
## chas     0.04878848 -0.0539293  0.1752602  0.07009677
## nox     -0.38005064  0.5908789 -0.4273208  0.72323480
## rm       0.12806864 -0.6138083  0.6953599 -0.15637178
## age     -0.27353398  0.6023385 -0.3769546  0.61393992
## dis      0.29151167 -0.4969958  0.2499287 -0.61634164
## rad     -0.44441282  0.4886763 -0.3816262  0.61978625
## tax     -0.44180801  0.5439934 -0.4685359  0.60874128
## ptratio -0.17738330  0.3740443 -0.5077867  0.25356836
## black    1.00000000 -0.3660869  0.3334608 -0.35121093
## lstat   -0.36608690  1.0000000 -0.7376627  0.45326273
## medv     0.33346082 -0.7376627  1.0000000 -0.26301673
## crim01  -0.35121093  0.4532627 -0.2630167  1.00000000


#Drawing a plot with the variables that have the highest correlation with Crim01.
corrplot(cor(Boston[c(3,5,7:10,15)]), method = 'number', type = 'lower')

plot(Boston[c(3,5,7:10,15)], col = 'dark blue')


I am electing to build my model using predictors that have correlation of .61 or higher. I will be using tax, rad, dis, age, and nox. Additionally, there appears to be some relation between nox and dis so I will use that interaction as well


#split data into test and train data
set.seed(22)
train_num <- sample(nrow(Boston), size = (nrow(Boston) * .75))
test_num <- -train_num
boston_train <- Boston[train_num, ]
boston_test <- Boston[test_num, ]
crim01_test <- Boston$crim01[test_num]


LDA Model: 14.1% Error Rate

boston_lda <- lda(crim01 ~ tax + rad + dis + age + nox + nox:dis, 
                data = boston_train)
lda_preds <- predict(boston_lda, boston_test)
table(lda_preds$class, crim01_test)
##    crim01_test
##      0  1
##   0 64 15
##   1  3 45


mean(lda_preds$class == crim01_test)
## [1] 0.8582677
1 - mean(lda_preds$class == crim01_test)
## [1] 0.1417323


QDA Model: 12.5% Error Rate

boston_qda <- qda(crim01 ~ tax + rad + dis + age + nox + nox:dis, 
                data = boston_train)
qda_preds <- predict(boston_qda, boston_test)
table(qda_preds$class, crim01_test)
##    crim01_test
##      0  1
##   0 65 14
##   1  2 46


mean(qda_preds$class == crim01_test)
## [1] 0.8740157
1-mean(qda_preds$class == crim01_test)
## [1] 0.1259843


LR Model: 14.1% Error Rate

boston_glm <- glm(crim01 ~ tax + rad + dis + age + nox + nox:dis, 
                data = boston_train)
glm_probs <- predict(boston_glm, boston_test, type = 'response')
glm_preds <- round(glm_probs)
table(glm_preds, crim01_test)
##          crim01_test
## glm_preds  0  1
##         0 64 15
##         1  3 45


mean(glm_preds == crim01_test)
## [1] 0.8582677
1-mean(glm_preds == crim01_test)
## [1] 0.1417323


NB Model: 14.1% Error Rate

boston_NB <- naiveBayes(crim01 ~ tax + rad + dis + age + nox, 
                data = boston_train)
NB_preds <- predict(boston_NB, boston_test)
table(NB_preds, crim01_test)
##         crim01_test
## NB_preds  0  1
##        0 63 17
##        1  4 43


mean(NB_preds == crim01_test)
## [1] 0.8346457
1-mean(glm_preds == crim01_test)
## [1] 0.1417323


KNN Model: 8.6% Error Rate with K=1

boston_train2 <- cbind(Boston$tax, Boston$rad, Boston$dis,
                     Boston$age, Boston$nox)[train_num,]
boston_test2 <- cbind(Boston$tax, Boston$rad, Boston$dis,
                     Boston$age, Boston$nox)[test_num,]
crim01_train <- Boston$crim01[train_num]
set.seed(22)
acc <- list()
for (i in 1:20) {
    knn_preds2 <- knn(boston_train2, boston_test2, crim01_train, k = i)
    acc[as.character(i)] = 1-mean(knn_preds2 == crim01_test)
}

acc <- unlist(acc)
#Displaying the error rate for each iteration of k value.  The lowest error rate is found with a k value of 8, which results in an 8.1% error rate.
acc
##          1          2          3          4          5          6          7 
## 0.08661417 0.10236220 0.10236220 0.11811024 0.10236220 0.11023622 0.10236220 
##          8          9         10         11         12         13         14 
## 0.11811024 0.11811024 0.12598425 0.11811024 0.11811024 0.12598425 0.14173228 
##         15         16         17         18         19         20 
## 0.14173228 0.17322835 0.14960630 0.14960630 0.14173228 0.14173228


I ran several different models, some with the interaction term and some without. In the end, the KNN model with a K of 1 proved to be the most accurate model with an error rate of 8.1%. I also added additional predictors on several of the models without any significant gain in accuracy. However, when I removed any of the 5 predictors I was using I noticed a decline in accuracy