#The exam consisted of 15 questions with which you could score a maximum of 55 points (5 points bonus included). The required number of questions answered correctly was lowered from 8 to 7 questions. If you answered 6 questions or less correctly, you did not pass the exam. There is no negotiation about the number of points achieved in the exam. I encourage you to retake the exam if you are not satisfied with the score you received. The exact date for the retake will be given to you in the student office.
mydata <- read.table("./Results_20022023.csv", header=TRUE, sep=";", dec=",")
library(psych)
psych::describe(mydata$Questions) #Number of correctly answered questions (15 max)
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 39 9.1 2.82 10 9.15 2.97 3 15 12 -0.25 -0.74 0.45
library(ggplot2)
ggplot(mydata, aes(x = Questions)) +
geom_bar() +
scale_x_continuous(breaks = (seq(0, 15, 1))) +
xlab("Number of correctly answered questions (max 15)") +
ylab("Frequency") +
stat_function(fun = function(x) dnorm(x,
mean = mean(mydata$Questions),
sd = sd(mydata$Questions)) * 39 * 1,
color = "darkred", linewidth = 1) +
geom_vline(xintercept = 6.5, col = "red", linewidth = 1)
\(NLB=0.20\times Presentation + 0.40\times Marketing + 0.40\times Statistics\)
If at least half of the team members rate a member differently and:
Regarding the question with Bonferroni correction: You got a point either if you answered that Answer with Bonferroni is wrong or if you answered All statements are correct.
Since I am very pleased with the effort you have put into your R homework, the number of points achieved on HW is multiplied by a factor of 1.15. Anyone who passes the exam may retake the exam once, and the higher grade will be used as the final grade.
mydata$Final <- mydata$Points + 1.15 * mydata$HW + 0.3 * mydata$NLB
library(psych)
psych::describe(mydata$Final)
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 39 81.85 13.04 84.38 82.28 11.49 52.5 106.8 54.3 -0.41 -0.51 2.09
library(ggplot2)
ggplot(mydata, aes(x = Final)) +
geom_histogram(binwidth = 5, colour = "Black", fill = "Pink" ) +
scale_x_continuous(limits = c(50, 110), breaks = (seq(50, 110, 5))) +
xlab("Number of final points") +
ylab("Frequency")
library(dplyr)
mydata <- mydata %>%
mutate(Grade = case_when(Passed == "NO" ~ 5,
Final <= 50 & Passed == "YES" ~ 5,
Final > 50 & Final <= 60 & Passed == "YES" ~ 6,
Final > 60 & Final <= 70 & Passed == "YES" ~ 7,
Final > 70 & Final <= 80 & Passed == "YES" ~ 8,
Final > 80 & Final <= 90 & Passed == "YES" ~ 9,
Final > 90 & Passed == "YES" ~ 10))
print(mydata[c(4, 7, 6, 8, 9, 10, 11, 12)])
## StudentID Questions Passed Points HW NLB Final Grade
## 1 19234707 12 YES 44 17.0 97.8 92.890 10
## 2 19228871 3 NO 11 13.5 86.6 52.505 5
## 3 19225294 8 YES 29 18.5 96.4 79.195 8
## 4 19609772 7 YES 26 15.0 96.0 72.050 8
## 5 19609788 10 YES 37 19.5 106.6 91.405 10
## 6 19609793 6 NO 22 13.5 94.0 65.725 5
## 7 19609809 13 YES 48 20.0 106.6 102.980 10
## 8 19609814 5 NO 18 18.0 96.6 67.680 5
## 9 19609835 10 YES 37 18.5 87.0 84.375 9
## 10 19228866 12 YES 44 17.5 96.4 93.045 10
## 11 19205592 12 YES 44 17.0 107.8 95.890 10
## 12 19596905 5 NO 18 8.0 96.0 56.000 5
## 13 19609840 5 NO 18 16.5 87.0 63.075 5
## 14 19227621 10 YES 37 18.5 94.0 86.475 9
## 15 19609856 9 YES 33 17.5 107.0 85.225 9
## 16 19228651 7 YES 26 19.5 94.0 76.625 8
## 17 19609861 9 YES 33 17.5 87.8 79.465 8
## 18 19609877 11 YES 40 16.0 94.0 86.600 9
## 19 19231931 7 YES 26 14.5 96.6 71.655 8
## 20 19609882 11 YES 40 18.5 97.0 90.375 10
## 21 19613031 13 YES 48 19.5 96.0 99.225 10
## 22 19609898 9 YES 33 17.0 91.0 79.850 8
## 23 19609903 12 YES 44 18.0 91.0 92.000 10
## 24 19204410 11 YES 40 19.5 94.0 90.625 10
## 25 19239071 8 YES 29 19.0 107.0 82.950 9
## 26 19238738 12 YES 44 19.5 106.6 98.405 10
## 27 19609919 10 YES 37 19.0 96.4 87.770 9
## 28 19609924 8 YES 29 17.0 96.4 77.470 8
## 29 19226764 7 YES 26 15.0 96.0 72.050 8
## 30 19232495 10 YES 37 19.0 94.0 87.050 9
## 31 19225231 10 YES 37 18.5 91.0 85.575 9
## 32 19229091 10 YES 37 15.5 91.0 82.125 9
## 33 19261458 15 YES 55 20.0 96.0 106.800 10
## 34 19208153 11 YES 40 14.0 97.8 85.440 9
## 35 19204405 5 NO 18 12.5 91.0 59.675 5
## 36 19230498 4 NO 15 14.0 96.0 59.900 5
## 37 19204253 9 YES 33 19.5 96.4 84.345 9
## 38 19207275 7 YES 26 17.5 94.0 74.325 8
## 39 19207081 12 YES 44 17.5 97.8 93.465 10